In [1]:
import pandas as pd
In [2]:
df = pd.DataFrame({'list': [[0, 0], [0, 1], [1, 0], [1, 1]]},
index=pd.date_range('2018-01-01', '2018-01-04', freq='D'))
In [3]:
print(df)
In [4]:
print(df.index)
In [5]:
print(type(df['list'][0]))
In [6]:
df.to_csv('data/dst/pandas_obj.csv')
In [7]:
df_from_csv = pd.read_csv('data/dst/pandas_obj.csv', index_col=0, parse_dates=True)
In [8]:
print(df_from_csv)
In [9]:
print(df_from_csv.index)
In [10]:
print(type(df_from_csv['list'][0]))
In [11]:
df_from_csv['list'] = df_from_csv['list'].apply(eval)
In [12]:
print(df_from_csv)
In [13]:
print(type(df_from_csv['list'][0]))
In [14]:
df.to_pickle('data/dst/pandas_obj.pkl')
In [15]:
df_from_pkl = pd.read_pickle('data/dst/pandas_obj.pkl')
In [16]:
print(df_from_pkl)
In [17]:
print(df_from_pkl.index)
In [18]:
print(type(df_from_pkl['list'][0]))
In [19]:
df.to_pickle('data/dst/pandas_obj.zip')
In [20]:
df_from_pkl_zip = pd.read_pickle('data/dst/pandas_obj.zip')
In [21]:
print(df_from_pkl_zip)