In [1]:
import numpy as np
import pandas as pd

In [2]:
df = pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]], columns=['a', 'b', 'c'])
print(df)


   a  b  c
0  1  2  3
1  4  5  6

In [3]:
a_df = df.values
print(a_df)


[[1 2 3]
 [4 5 6]]

In [4]:
print(type(a_df))


<class 'numpy.ndarray'>

In [5]:
print(a_df.dtype)


int64

In [6]:
s = df['a']
print(s)


0    1
1    4
Name: a, dtype: int64

In [7]:
a_s = s.values
print(a_s)


[1 4]

In [8]:
print(type(a_s))


<class 'numpy.ndarray'>

In [9]:
print(a_s.dtype)


int64

In [10]:
df_f = pd.DataFrame([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
print(df_f)


     0    1    2
0  0.1  0.2  0.3
1  0.4  0.5  0.6

In [11]:
a_df_f = df_f.values
print(a_df_f)


[[0.1 0.2 0.3]
 [0.4 0.5 0.6]]

In [12]:
print(type(a_df_f))


<class 'numpy.ndarray'>

In [13]:
print(a_df_f.dtype)


float64

In [14]:
df_multi = pd.read_csv('data/src/sample_pandas_normal.csv')
print(df_multi)


      name  age state  point
0    Alice   24    NY     64
1      Bob   42    CA     92
2  Charlie   18    CA     70
3     Dave   68    TX     70
4    Ellen   24    CA     88
5    Frank   30    NY     57

In [15]:
a_df_multi = df_multi.values
print(a_df_multi)


[['Alice' 24 'NY' 64]
 ['Bob' 42 'CA' 92]
 ['Charlie' 18 'CA' 70]
 ['Dave' 68 'TX' 70]
 ['Ellen' 24 'CA' 88]
 ['Frank' 30 'NY' 57]]

In [16]:
print(type(a_df_multi))


<class 'numpy.ndarray'>

In [17]:
print(a_df_multi.dtype)


object

In [18]:
a_df_int = df_multi[['age', 'point']].values
print(a_df_int)


[[24 64]
 [42 92]
 [18 70]
 [68 70]
 [24 88]
 [30 57]]

In [19]:
print(type(a_df_int))


<class 'numpy.ndarray'>

In [20]:
print(a_df_int.dtype)


int64

In [21]:
print(a_df_int.T)


[[24 42 18 68 24 30]
 [64 92 70 70 88 57]]

In [22]:
a_df_int = df_multi.select_dtypes(include=int).values
print(a_df_int)


[[24 64]
 [42 92]
 [18 70]
 [68 70]
 [24 88]
 [30 57]]

In [23]:
print(type(a_df_int))


<class 'numpy.ndarray'>

In [24]:
print(a_df_int.dtype)


int64