In [1]:
import numpy as np
import pandas as pd
In [2]:
df = pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]], columns=['a', 'b', 'c'])
print(df)
In [3]:
a_df = df.values
print(a_df)
In [4]:
print(type(a_df))
In [5]:
print(a_df.dtype)
In [6]:
s = df['a']
print(s)
In [7]:
a_s = s.values
print(a_s)
In [8]:
print(type(a_s))
In [9]:
print(a_s.dtype)
In [10]:
df_f = pd.DataFrame([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
print(df_f)
In [11]:
a_df_f = df_f.values
print(a_df_f)
In [12]:
print(type(a_df_f))
In [13]:
print(a_df_f.dtype)
In [14]:
df_multi = pd.read_csv('data/src/sample_pandas_normal.csv')
print(df_multi)
In [15]:
a_df_multi = df_multi.values
print(a_df_multi)
In [16]:
print(type(a_df_multi))
In [17]:
print(a_df_multi.dtype)
In [18]:
a_df_int = df_multi[['age', 'point']].values
print(a_df_int)
In [19]:
print(type(a_df_int))
In [20]:
print(a_df_int.dtype)
In [21]:
print(a_df_int.T)
In [22]:
a_df_int = df_multi.select_dtypes(include=int).values
print(a_df_int)
In [23]:
print(type(a_df_int))
In [24]:
print(a_df_int.dtype)