In [1]:
import pandas as pd
In [2]:
df = pd.DataFrame({'value': [1, 15, 31]},
index=pd.to_datetime(['2018-01-01', '2018-01-15', '2018-01-31']))
In [3]:
print(df)
In [4]:
print(df.asfreq('5D'))
In [5]:
print(df.asfreq('5D', fill_value=15))
In [6]:
print(df.asfreq('5D', method='pad'))
In [7]:
print(df.asfreq('5D', method='bfill'))
In [8]:
print(df.resample('5D').ffill())
In [9]:
print(df.resample('5D').bfill())
In [10]:
print(df.resample('5D').nearest())
In [11]:
print(df.resample('5D').interpolate())
In [12]:
df.loc['2018-01-15', 'value'] = 100
print(df)
In [13]:
print(df.resample('5D').interpolate())
In [14]:
print(df.resample('D').interpolate())
In [15]:
print(df.resample('D').interpolate().asfreq('5D'))
In [16]:
print(df.resample('D').interpolate('spline', order=2))
In [17]:
print(df.resample('D').interpolate('spline', order=2).asfreq('5D'))
In [18]:
df_nan = pd.DataFrame({'value': [1, pd.np.nan, pd.np.nan, pd.np.nan, 31]},
index=pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-15', '2018-01-20', '2018-01-31']))
In [19]:
print(df_nan)
In [20]:
print(df_nan.interpolate())
In [21]:
print(df_nan.interpolate('time'))