In [1]:
import pandas as pd

In [2]:
df = pd.read_csv('data/src/sample_pandas_normal.csv')
print(df)


      name  age state  point
0    Alice   24    NY     64
1      Bob   42    CA     92
2  Charlie   18    CA     70
3     Dave   68    TX     70
4    Ellen   24    CA     88
5    Frank   30    NY     57

In [3]:
df_s = df.sort_values('state')
print(df_s)


      name  age state  point
1      Bob   42    CA     92
2  Charlie   18    CA     70
4    Ellen   24    CA     88
0    Alice   24    NY     64
5    Frank   30    NY     57
3     Dave   68    TX     70

In [4]:
df_s = df.sort_values('state', ascending=False)
print(df_s)


      name  age state  point
3     Dave   68    TX     70
0    Alice   24    NY     64
5    Frank   30    NY     57
1      Bob   42    CA     92
2  Charlie   18    CA     70
4    Ellen   24    CA     88

In [5]:
df_s = df.sort_values(['state', 'age'])
print(df_s)


      name  age state  point
2  Charlie   18    CA     70
4    Ellen   24    CA     88
1      Bob   42    CA     92
0    Alice   24    NY     64
5    Frank   30    NY     57
3     Dave   68    TX     70

In [6]:
df_s = df.sort_values(['age', 'state'])
print(df_s)


      name  age state  point
2  Charlie   18    CA     70
4    Ellen   24    CA     88
0    Alice   24    NY     64
5    Frank   30    NY     57
1      Bob   42    CA     92
3     Dave   68    TX     70

In [7]:
df_s = df.sort_values(['age', 'state'], ascending=[True, False])
print(df_s)


      name  age state  point
2  Charlie   18    CA     70
0    Alice   24    NY     64
4    Ellen   24    CA     88
5    Frank   30    NY     57
1      Bob   42    CA     92
3     Dave   68    TX     70

In [8]:
df_nan = df.copy()
df_nan.iloc[:2, 1] = pd.np.nan
print(df_nan)


      name   age state  point
0    Alice   NaN    NY     64
1      Bob   NaN    CA     92
2  Charlie  18.0    CA     70
3     Dave  68.0    TX     70
4    Ellen  24.0    CA     88
5    Frank  30.0    NY     57

In [9]:
df_nan_s = df_nan.sort_values('age')
print(df_nan_s)


      name   age state  point
2  Charlie  18.0    CA     70
4    Ellen  24.0    CA     88
5    Frank  30.0    NY     57
3     Dave  68.0    TX     70
0    Alice   NaN    NY     64
1      Bob   NaN    CA     92

In [10]:
df_nan_s = df_nan.sort_values('age', na_position='first')
print(df_nan_s)


      name   age state  point
0    Alice   NaN    NY     64
1      Bob   NaN    CA     92
2  Charlie  18.0    CA     70
4    Ellen  24.0    CA     88
5    Frank  30.0    NY     57
3     Dave  68.0    TX     70

In [11]:
df.sort_values('state', inplace=True)
print(df)


      name  age state  point
1      Bob   42    CA     92
2  Charlie   18    CA     70
4    Ellen   24    CA     88
0    Alice   24    NY     64
5    Frank   30    NY     57
3     Dave   68    TX     70

In [12]:
df_d = df.drop(['name', 'state'], axis=1)
print(df_d)


   age  point
1   42     92
2   18     70
4   24     88
0   24     64
5   30     57
3   68     70

In [13]:
df_d .sort_values(by=1, axis=1, ascending=False, inplace=True)
print(df_d)


   point  age
1     92   42
2     70   18
4     88   24
0     64   24
5     57   30
3     70   68

In [14]:
print(df)


      name  age state  point
1      Bob   42    CA     92
2  Charlie   18    CA     70
4    Ellen   24    CA     88
0    Alice   24    NY     64
5    Frank   30    NY     57
3     Dave   68    TX     70

In [15]:
df_s = df.sort_index()
print(df_s)


      name  age state  point
0    Alice   24    NY     64
1      Bob   42    CA     92
2  Charlie   18    CA     70
3     Dave   68    TX     70
4    Ellen   24    CA     88
5    Frank   30    NY     57

In [16]:
df_s = df.sort_index(ascending=False)
print(df_s)


      name  age state  point
5    Frank   30    NY     57
4    Ellen   24    CA     88
3     Dave   68    TX     70
2  Charlie   18    CA     70
1      Bob   42    CA     92
0    Alice   24    NY     64

In [17]:
df.sort_index(inplace=True)
print(df)


      name  age state  point
0    Alice   24    NY     64
1      Bob   42    CA     92
2  Charlie   18    CA     70
3     Dave   68    TX     70
4    Ellen   24    CA     88
5    Frank   30    NY     57

In [18]:
df_s = df.sort_index(axis=1)
print(df_s)


   age     name  point state
0   24    Alice     64    NY
1   42      Bob     92    CA
2   18  Charlie     70    CA
3   68     Dave     70    TX
4   24    Ellen     88    CA
5   30    Frank     57    NY

In [19]:
df.sort_index(axis=1, ascending=False, inplace=True)
print(df)


  state  point     name  age
0    NY     64    Alice   24
1    CA     92      Bob   42
2    CA     70  Charlie   18
3    TX     70     Dave   68
4    CA     88    Ellen   24
5    NY     57    Frank   30