In [1]:
import pandas as pd
In [2]:
df = pd.read_csv('data/src/sample_pandas_normal.csv')
print(df)
In [3]:
df_s = df.sort_values('state')
print(df_s)
In [4]:
df_s = df.sort_values('state', ascending=False)
print(df_s)
In [5]:
df_s = df.sort_values(['state', 'age'])
print(df_s)
In [6]:
df_s = df.sort_values(['age', 'state'])
print(df_s)
In [7]:
df_s = df.sort_values(['age', 'state'], ascending=[True, False])
print(df_s)
In [8]:
df_nan = df.copy()
df_nan.iloc[:2, 1] = pd.np.nan
print(df_nan)
In [9]:
df_nan_s = df_nan.sort_values('age')
print(df_nan_s)
In [10]:
df_nan_s = df_nan.sort_values('age', na_position='first')
print(df_nan_s)
In [11]:
df.sort_values('state', inplace=True)
print(df)
In [12]:
df_d = df.drop(['name', 'state'], axis=1)
print(df_d)
In [13]:
df_d .sort_values(by=1, axis=1, ascending=False, inplace=True)
print(df_d)
In [14]:
print(df)
In [15]:
df_s = df.sort_index()
print(df_s)
In [16]:
df_s = df.sort_index(ascending=False)
print(df_s)
In [17]:
df.sort_index(inplace=True)
print(df)
In [18]:
df_s = df.sort_index(axis=1)
print(df_s)
In [19]:
df.sort_index(axis=1, ascending=False, inplace=True)
print(df)