In [1]:
import pandas as pd
In [2]:
s = pd.Series([0, 1, 2], index=['a', 'b', 'c'])
print(s)
In [3]:
df = pd.DataFrame(s)
print(df)
In [4]:
print(type(df))
In [5]:
df_ = pd.DataFrame([s])
print(df_)
In [6]:
print(type(df_))
In [7]:
s_name = pd.Series([0, 1, 2], index=['a', 'b', 'c'], name='X')
print(s_name)
In [8]:
print(pd.DataFrame(s_name))
In [9]:
print(pd.DataFrame([s_name]))
In [10]:
s1 = pd.Series([0, 1, 2], index=['a', 'b', 'c'])
print(s1)
In [11]:
s2 = pd.Series([0.0, 0.1, 0.2], index=['a', 'b', 'c'])
print(s2)
In [12]:
print(pd.DataFrame({'col0': s1, 'col1': s2}))
In [13]:
print(pd.DataFrame([s1, s2]))
In [14]:
print(pd.concat([s1, s2], axis=1))
In [15]:
s1_name = pd.Series([0, 1, 2], index=['a', 'b', 'c'], name='X')
print(s1_name)
In [16]:
s2_name = pd.Series([0.0, 0.1, 0.2], index=['a', 'b', 'c'], name='Y')
print(s2_name)
In [17]:
print(pd.DataFrame({s1_name.name: s1_name, s2_name.name: s2_name}))
In [18]:
print(pd.DataFrame([s1_name, s2_name]))
In [19]:
print(pd.concat([s1_name, s2_name], axis=1))
In [20]:
s3 = pd.Series([0.1, 0.2, 0.3], index=['b', 'c', 'd'])
print(s3)
In [21]:
print(pd.DataFrame({'col0': s1, 'col1': s3}))
In [22]:
print(pd.DataFrame([s1, s3]))
In [23]:
print(pd.concat([s1, s3], axis=1))
In [24]:
print(pd.concat([s1, s3], axis=1, join='inner'))
In [25]:
print(s1.values)
In [26]:
print(type(s1.values))
In [27]:
print(pd.DataFrame({'col0': s1.values, 'col1': s3.values}))
In [28]:
print(pd.DataFrame([s1.values, s3.values]))
In [29]:
# print(pd.concat([s1.values, s3.values], axis=1))
# TypeError: cannot concatenate object of type '<class 'numpy.ndarray'>'; only Series and DataFrame objs are valid
In [30]:
print(pd.DataFrame({'col0': s1, 'col1': s3.values}))
In [31]:
print(pd.DataFrame([s1, s3.values]))
In [32]:
print(pd.DataFrame({'col0': s1.values, 'col1': s3.values}, index=s1.index))
In [33]:
print(pd.DataFrame([s1.values, s3.values], columns=s1.index))
In [34]:
s4 = pd.Series([0.1, 0.2], index=['b', 'd'])
print(s4)
In [35]:
print(pd.DataFrame({'col0': s1, 'col1': s4}))
In [36]:
print(pd.DataFrame([s1, s4]))
In [37]:
print(pd.concat([s1, s4], axis=1, join='inner'))
In [38]:
# print(pd.DataFrame({'col0': s1.values, 'col1': s4.values}))
# ValueError: arrays must all be same length
In [39]:
print(pd.DataFrame([s1.values, s4.values]))
In [40]:
s4.index = ['a', 'b']
print(s4)
In [41]:
print(pd.DataFrame({'col0': s1, 'col1': s4}))
In [42]:
print(pd.DataFrame({'col0': s1, 'col1': s4}).fillna(100))
In [43]:
print(s)
In [44]:
df = pd.DataFrame(s)
print(df)
In [45]:
s[0] = 100
print(s)
In [46]:
print(df)
In [47]:
df_copy = pd.DataFrame(s, copy=True)
print(df_copy)
In [48]:
s[1] = 100
print(s)
In [49]:
print(df_copy)
In [50]:
df_c = pd.concat([s1, s2], axis=1)
print(df_c)
In [51]:
s1[0] = 100
print(s1)
In [52]:
print(df_c)
In [53]:
df_c_false = pd.concat([s1, s2], axis=1, copy=False)
print(df_c_false)
In [54]:
s1[1] = 100
print(s1)
In [55]:
print(df_c_false)