In [1]:
import pandas as pd
In [2]:
df = pd.read_csv('data/src/sample_pandas_normal.csv')
In [3]:
print(df)
In [4]:
print(df[df['age'] < 25])
In [5]:
print(df.query('age < 25'))
In [6]:
print(df.query('not age < 25'))
In [7]:
print(df.query('24 <= age < 50'))
In [8]:
print(df.query('age < point / 3'))
In [9]:
print(df.query('state == "CA"'))
In [10]:
print(df.query('state != "CA"'))
In [11]:
print(df[df['state'].isin(['NY', 'TX'])])
In [12]:
print(df.query('state in ["NY", "TX"]'))
In [13]:
print(df.query('state == ["NY", "TX"]'))
In [14]:
print(df.query('name.str.endswith("e")', engine='python'))
In [15]:
print(df.query('name.str.contains("li")', engine='python'))
In [16]:
print(df.query('name.str.match(".*i.*e")', engine='python'))
In [17]:
print(df.query('age.astype("str").str.endswith("8")', engine='python'))
In [18]:
df.at[0, 'name'] = None
print(df)
In [19]:
# print(df.query('name.str.endswith("e")', engine='python'))
# ValueError: cannot index with vector containing NA / NaN values
In [20]:
print(df[df['name'].str.endswith('e', na=False)])
In [21]:
# print(df.query('name.str.endswith("e", na=False)', engine='python'))
# AttributeError: 'dict' object has no attribute 'append'
In [22]:
df['name'].fillna('Alice', inplace=True)
print(df)
In [23]:
print(df.query('index % 2 == 0'))
In [24]:
df_name = df.set_index('name')
print(df_name)
In [25]:
print(df_name.query('name.str.endswith("e")', engine='python'))
In [26]:
print(df_name.query('index.str.endswith("e")', engine='python'))
In [27]:
val = 80
print(df.query('point > @val'))
In [28]:
print(df[(df['age'] < 25) & (df['point'] > 65)])
In [29]:
print(df.query('age < 25 & point > 65'))
In [30]:
print(df.query('age < 25 and point > 65'))
In [31]:
print(df.query('age < 25 | point > 65'))
In [32]:
print(df.query('age < 25 or point > 65'))
In [33]:
print(df.query('not age < 25 and not point > 65'))
In [34]:
print(df.query('age == 24 | point > 80 & state == "CA"'))
In [35]:
print(df.query('(age == 24 | point > 80) & state == "CA"'))
In [36]:
df.columns = ['名前', 'age.year', 'state name', 3]
print(df)
In [37]:
print(df.query('名前 == ["Alice", "Dave"]'))
In [38]:
print(df.query('名前.str.contains("li")', engine='python'))
In [39]:
# print(df.query('age.year < 25'))
# UndefinedVariableError: name 'age' is not defined
In [40]:
# print(df.query('state name == "CA"'))
# SyntaxError: invalid syntax
In [41]:
# print(df.query('3 > 75'))
# KeyError: False
In [42]:
print(df[df['age.year'] < 25])
In [43]:
print(df[df['state name'] == 'CA'])
In [44]:
print(df[df[3] > 75])
In [45]:
df.rename(columns={3: 'point'}, inplace=True)
print(df)
In [46]:
df.columns = [str(s).replace(' ', '_').replace('.', '_') for s in df.columns]
print(df)
In [47]:
df.query('age_year > 25', inplace=True)
print(df)