In [1]:
import pandas as pd
In [2]:
df = pd.DataFrame({'col_1': range(11),
'col_2': [i ** 2 for i in range(11)],
'col_3': list('abcdefghijk')})
In [3]:
print(df)
In [4]:
print(df.quantile())
In [5]:
print(type(df.quantile()))
In [6]:
print(df['col_1'].quantile())
In [7]:
print(type(df['col_1'].quantile()))
In [8]:
print(df.quantile(0.2))
In [9]:
print(df.quantile([0, 0.25, 0.5, 0.75, 1.0]))
In [10]:
print(type(df.quantile([0, 0.25, 0.5, 0.75, 1.0])))
In [11]:
print(df['col_1'].quantile([0, 0.25, 0.5, 0.75, 1.0]))
In [12]:
print(type(df['col_1'].quantile([0, 0.25, 0.5, 0.75, 1.0])))
In [13]:
print(df.quantile(0.21))
In [14]:
print(df.quantile(0.21, interpolation='linear'))
In [15]:
print(df.quantile(0.21, interpolation='lower'))
In [16]:
print(df.quantile(0.21, interpolation='higher'))
In [17]:
print(df.quantile(0.21, interpolation='nearest'))
In [18]:
print(df.quantile(0.21, interpolation='midpoint'))
In [19]:
print(df.quantile(0.2))
In [20]:
print(df.quantile(0.2, interpolation='lower'))
In [21]:
print(df.quantile(axis=1))
In [22]:
# print(df.quantile(numeric_only=False))
# TypeError: can't multiply sequence by non-int of type 'float'
In [23]:
print(df.quantile(numeric_only=False, interpolation='lower'))
In [24]:
print(df.quantile(0.25, numeric_only=False, interpolation='lower'))
In [25]:
print(df.quantile(0.25, numeric_only=False, interpolation='higher'))
In [26]:
df['col_3'] = pd.date_range('2019-01-01', '2019-01-11')
In [27]:
print(df)
In [28]:
print(df.dtypes)
In [29]:
print(df.quantile())
In [30]:
print(df.quantile(numeric_only=False))
In [31]:
print(df.quantile(0.25, numeric_only=False))
In [32]:
print(df.quantile(0.25, numeric_only=False, interpolation='lower'))