In [1]:
import pandas as pd
import numpy as np
In [2]:
df = pd.DataFrame({'col1': [2, 3, 1, 3, 3, 4],
'col2': [30, 10, 10, 40, 40, 20]},
index=['A', 'B', 'C', 'D', 'E', 'F'])
print(df)
In [3]:
s = df['col1']
print(s)
In [4]:
print(df.max())
In [5]:
print(type(df.max()))
In [6]:
print(df.min())
In [7]:
print(type(df.min()))
In [8]:
print(df.max(axis=1))
In [9]:
print(df.min(axis=1))
In [10]:
print(s.max())
In [11]:
print(type(s.max()))
In [12]:
print(s.min())
In [13]:
print(type(s.min()))
In [14]:
print(s.nlargest(4))
In [15]:
print(type(s.nlargest(4)))
In [16]:
print(s.nsmallest(4))
In [17]:
print(type(s.nsmallest(4)))
In [18]:
print(s.nlargest(1))
In [19]:
print(type(s.nlargest(1)))
In [20]:
print(df.nlargest(4, 'col1'))
In [21]:
print(type(df.nlargest(4, 'col1')))
In [22]:
print(df.nsmallest(4, 'col1'))
In [23]:
print(type(df.nsmallest(4, 'col1')))
In [24]:
print(df.nlargest(1, 'col1'))
In [25]:
print(type(df.nlargest(1, 'col1')))
In [26]:
print(df.nlargest(4, ['col1', 'col2']))
In [27]:
print(df.nlargest(4, ['col2', 'col1']))
In [28]:
print(df.nsmallest(4, 'col1'))
In [29]:
print(df.nsmallest(4, 'col1', keep='first'))
In [30]:
print(df.nsmallest(4, 'col1', keep='last'))
In [31]:
print(df.nsmallest(4, 'col1', keep='all'))
In [32]:
print(df.nsmallest(3, ['col1', 'col2'], keep='all'))
In [33]:
print(df.nsmallest(4, ['col1', 'col2'], keep='all'))
In [34]:
print(df['col1'].nsmallest(4).tolist())
In [35]:
print(type(df['col1'].nsmallest(4).tolist()))
In [36]:
print(df['col1'].nsmallest(4).to_numpy())
In [37]:
print(type(df['col1'].nsmallest(4).to_numpy()))
In [38]:
print(df['col1'].nsmallest(4).values)
In [39]:
print(type(df['col1'].nsmallest(4).values))
In [40]:
print(df['col1'].nsmallest(3))
In [41]:
print(df['col2'].nsmallest(3))
In [42]:
print([df[col_name].nsmallest(3).tolist() for col_name in df])
In [43]:
print({col_name: col.nsmallest(3).tolist() for col_name, col in df.iteritems()})
In [44]:
print(np.array([df[col_name].nsmallest(3).tolist() for col_name in df]))
In [45]:
print([df[col_name].nsmallest(3, keep='all').tolist() for col_name in df])
In [46]:
print({col_name: col.nsmallest(3, keep='all').tolist() for col_name, col in df.iteritems()})
In [47]:
print(np.array([df[col_name].nsmallest(3, keep='all').tolist() for col_name in df]))