In [1]:
import pandas as pd
import numpy as np
In [2]:
df = pd.read_csv('data/src/sample_pandas_normal.csv', index_col=0)
In [3]:
df['sex'] = ['female', np.nan, 'male', 'male', 'female', 'male']
df['rank'] = [2, 1, 1, 0, 2, 0]
In [4]:
print(df)
In [5]:
print(pd.get_dummies(df['sex']))
In [6]:
print(pd.get_dummies(['male', 1, 1, 2]))
In [7]:
print(pd.get_dummies(np.arange(6)))
In [8]:
# print(pd.get_dummies(np.arange(6).reshape((2, 3))))
# Exception: Data must be 1-dimensional
In [9]:
print(pd.get_dummies(df))
In [10]:
print(pd.get_dummies(df, drop_first=True))
In [11]:
print(pd.get_dummies(df, drop_first=True, dummy_na=True))
In [12]:
print(pd.get_dummies(df, drop_first=True, prefix='', prefix_sep=''))
In [13]:
print(pd.get_dummies(df, drop_first=True, prefix=['ST', 'sex'], prefix_sep='-'))
In [14]:
print(pd.get_dummies(df, drop_first=True, prefix={'state': 'ST', 'sex': 'sex'}, prefix_sep='-'))
In [15]:
print(pd.get_dummies(df, drop_first=True, columns=['sex', 'rank']))
In [16]:
df['rank'] = df['rank'].astype(object)
print(pd.get_dummies(df, drop_first=True))
In [17]:
print(df['state'].map({'CA': 0, 'NY': 1, 'TX': 2}))
In [18]:
df['state'] = df['state'].map({'CA': 0, 'NY': 1, 'TX': 2})
print(df)