In [1]:
import warnings
warnings.simplefilter('ignore', FutureWarning)
In [2]:
import datetime
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
In [3]:
with open('data/temp/alpha_vantage_api_key.txt') as f:
api_key = f.read()
In [4]:
start = datetime.datetime(2015, 1, 1)
end = datetime.datetime(2019, 12, 31)
In [5]:
df_sne = web.DataReader('SNE', 'av-daily', start, end, api_key=api_key)
print(df_sne)
In [6]:
df_aapl = web.DataReader('AAPL', 'av-daily', start, end, api_key=api_key)
print(df_aapl)
In [7]:
df_sne_aapl = pd.DataFrame({'SNE': df_sne['close'], 'AAPL': df_aapl['close']})
print(df_sne_aapl)
In [8]:
df_sne.to_csv('data/src/sne_2015_2019.csv')
df_aapl.to_csv('data/src/aapl_2015_2019.csv')
df_sne_aapl.to_csv('data/src/sne_aapl_2015_2019.csv')
In [9]:
print(type(df_sne_aapl.index))
In [10]:
df_sne_aapl.index = pd.to_datetime(df_sne_aapl.index)
print(type(df_sne_aapl.index))
In [11]:
df_sne_aapl.plot(title='SNE vs. AAPL', grid=True)
# plt.show()
plt.savefig('data/dst/pandas_datareader_stock.png')
plt.close()
In [12]:
df_sne_aapl['SNE'] /= df_sne_aapl['SNE'][0]
df_sne_aapl['AAPL'] /= df_sne_aapl['AAPL'][0]
In [13]:
df_sne_aapl.plot(title='SNE vs. AAPL', grid=True)
plt.savefig('data/dst/pandas_datareader_stock_normalize.png')
plt.close()