In [1]:
import numpy as np
In [2]:
a = np.array([0, 1, 2])
b = np.array([2, 0, 6])
In [3]:
print(np.maximum(a, b))
In [4]:
print(np.fmax(a, b))
In [5]:
l_a = [0, 1, 2]
l_b = [2, 0, 6]
In [6]:
print(np.maximum(l_a, l_b))
In [7]:
print(np.fmax(l_a, l_b))
In [8]:
print(np.maximum(0, 2))
In [9]:
print(np.fmax(0, 2))
In [10]:
print(max(0, 2))
In [11]:
a_2d = np.arange(6).reshape(2, 3)
print(a_2d)
In [12]:
print(b)
In [13]:
print(a_2d + b)
In [14]:
print(np.maximum(a_2d, b))
In [15]:
print(np.fmax(a_2d, b))
In [16]:
a_mismatch = np.array([0, 1, 2, 3])
In [17]:
# print(np.maximum(a_mismatch, b))
# ValueError: operands could not be broadcast together with shapes (4,) (3,)
In [18]:
# print(np.fmax(a_mismatch, b))
# ValueError: operands could not be broadcast together with shapes (4,) (3,)
In [19]:
print(np.maximum(a_2d, 2))
In [20]:
print(np.fmax(a_2d, 2))
In [21]:
print(np.maximum(2, a_2d))
In [22]:
print(np.fmax(2, a_2d))
In [23]:
print(np.maximum([np.nan, np.nan], [np.inf, 0]))
In [24]:
print(np.fmax([np.nan, np.nan], [np.inf, 0]))