In [1]:
import numpy as np
In [2]:
a = np.array([0, 2, 3, 6])
b = np.array([3, 4, 5, 15])
c = np.array([6, 8, 9, 9])
In [3]:
print(np.gcd.reduce([a, b, c]))
In [4]:
print(np.gcd(np.gcd(a, b), c))
In [5]:
print(np.lcm.reduce([a, b, c]))
In [6]:
print(np.gcd.reduce([6, 9, 12, 15]))
In [7]:
print(np.gcd.reduce((a, b, c)))
In [8]:
# print(np.gcd.reduce(a, b, c))
# TypeError: data type not understood
In [9]:
a_2d = np.array([[0, 2, 3, 6], [0, 2, 3, 6]])
print(a_2d)
In [10]:
# print(np.gcd.reduce([a, b, a_2d]))
# ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
In [11]:
print(np.gcd(np.gcd(a, b), a_2d))
In [12]:
# print(np.gcd.reduce([a, b, 9]))
# ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
In [13]:
print(np.gcd(np.gcd(a, b), 9))
In [14]:
a_1d = np.array([4, 6, 12])
In [15]:
print(np.gcd.reduce(a_1d))
In [16]:
print(np.lcm.reduce(a_1d))
In [17]:
a_2d = np.array([[4, 6, 12], [2, 12, 16]])
print(a_2d)
In [18]:
print(np.gcd.reduce(a_2d))
In [19]:
print(np.gcd(a_2d[0], a_2d[1]))
In [20]:
print(a_2d.ravel())
In [21]:
print(np.gcd.reduce(a_2d.ravel()))
In [22]:
print(np.lcm.reduce(a_2d.ravel()))