In [1]:
import numpy as np

In [2]:
a = np.array([1, 2, 3], dtype=np.int64)
print(a.dtype)


int64

In [3]:
a = np.array([1, 2, 3], dtype='int64')
print(a.dtype)


int64

In [4]:
a = np.array([1, 2, 3], dtype='i8')
print(a.dtype)


int64

In [5]:
print(int is np.int)


True

In [6]:
a = np.array([1, 2, 3], dtype=int)
print(a.dtype)


int64

In [7]:
a = np.array([1, 2, 3], dtype='int')
print(a.dtype)


int64

In [8]:
a_str = np.array([1, 2, 3], dtype=str)
print(a_str)
print(a_str.dtype)


['1' '2' '3']
<U1

In [9]:
a_str[0] = 'abcde'
print(a_str)


['a' '2' '3']

In [10]:
a_str10 = np.array([1, 2, 3], dtype='U10')
print(a_str10.dtype)


<U10

In [11]:
a_str10[0] = 'abcde'
print(a_str10)


['abcde' '2' '3']

In [12]:
a_object = np.array([1, 0.1, 'one'], dtype=object)
print(a_object)
print(a_object.dtype)


[1 0.1 'one']
object

In [13]:
print(type(a_object[0]))
print(type(a_object[1]))
print(type(a_object[2]))


<class 'int'>
<class 'float'>
<class 'str'>

In [14]:
a_object[2] = 'oneONE'
print(a_object)


[1 0.1 'oneONE']

In [15]:
l = [1, 0.1, 'oneONE']
print(type(l[0]))
print(type(l[1]))
print(type(l[2]))


<class 'int'>
<class 'float'>
<class 'str'>

In [16]:
print(a_object * 2)


[2 0.2 'oneONEoneONE']

In [17]:
print(l * 2)


[1, 0.1, 'oneONE', 1, 0.1, 'oneONE']