In [1]:
import numpy as np
In [2]:
a = np.arange(12).reshape((3, 4))
print(a)
In [3]:
print(a < 5)
In [4]:
print(a[a < 5])
In [5]:
print(a < 10)
In [6]:
print(a[a < 10])
In [7]:
b = a[a < 10]
print(b)
In [8]:
print(a)
In [9]:
print(a[a < 5].sum())
In [10]:
print(a[a < 5].mean())
In [11]:
print(a[a < 5].max())
In [12]:
print(a[a < 10].min())
In [13]:
print(a[a < 10].std())
In [14]:
print(a < 5)
In [15]:
print(np.all(a < 5))
In [16]:
print(np.all(a < 5, axis=0))
In [17]:
print(np.all(a < 5, axis=1))
In [18]:
print(a < 10)
In [19]:
print(np.all(a < 10, axis=0))
In [20]:
print(np.all(a < 10, axis=1))
In [21]:
print(a[:, np.all(a < 10, axis=0)])
In [22]:
print(a[np.all(a < 10, axis=1), :])
In [23]:
print(a[np.all(a < 10, axis=1)])
In [24]:
print(a[:, np.all(a < 5, axis=0)])
In [25]:
print(a[np.all(a < 5, axis=1)])
In [26]:
print(a[np.all(a < 5, axis=1)].ndim)
In [27]:
print(a[np.all(a < 5, axis=1)].shape)
In [28]:
print(a < 5)
In [29]:
print(np.any(a < 5))
In [30]:
print(np.any(a < 5, axis=0))
In [31]:
print(np.any(a < 5, axis=1))
In [32]:
print(a[:, np.any(a < 5, axis=0)])
In [33]:
print(a[np.any(a < 5, axis=1)])
In [34]:
print(a[~(a < 5)])
In [35]:
print(a[:, np.all(a < 10, axis=0)])
In [36]:
print(a[:, ~np.all(a < 10, axis=0)])
In [37]:
print(a[np.any(a < 5, axis=1)])
In [38]:
print(a[~np.any(a < 5, axis=1)])
In [39]:
print(a)
In [40]:
print(np.delete(a, [0, 2], axis=0))
In [41]:
print(np.delete(a, [0, 2], axis=1))
In [42]:
print(a < 2)
In [43]:
print(np.where(a < 2))
In [44]:
print(np.where(a < 2)[0])
In [45]:
print(np.where(a < 2)[1])
In [46]:
print(np.delete(a, np.where(a < 2)[0], axis=0))
In [47]:
print(np.delete(a, np.where(a < 2)[1], axis=1))
In [48]:
print(a == 6)
In [49]:
print(np.where(a == 6))
In [50]:
print(np.delete(a, np.where(a == 6)))
In [51]:
print(np.delete(a, np.where(a == 6)[0], axis=0))
In [52]:
print(np.delete(a, np.where(a == 6)[1], axis=1))
In [53]:
print(a[(a < 10) & (a % 2 == 1)])
In [54]:
print(a[np.any((a == 2) | (a == 10), axis=1)])
In [55]:
print(a[:, ~np.any((a == 2) | (a == 10), axis=0)])