In [1]:
import numpy as np
In [2]:
a = np.arange(3)
print(a)
In [3]:
a_append = np.append(a, 3)
print(a_append)
In [4]:
print(a)
In [5]:
print(np.append(a, [3, 4, 5]))
In [6]:
print(np.append(a, np.arange(3, 6)))
In [7]:
print(np.append(-1, a))
In [8]:
print(np.append([-3, -2, -1], a))
In [9]:
print(np.append(np.arange(-3, 0), a))
In [10]:
a_2d = np.arange(6).reshape(2, 3)
print(a_2d)
In [11]:
print(np.append(a_2d, 10))
In [12]:
a_2d_ex = np.arange(6).reshape(2, 3) * 10
print(a_2d_ex)
In [13]:
print(np.append(a_2d, a_2d_ex))
In [14]:
print(np.append(a_2d, a_2d_ex, axis=0))
In [15]:
print(np.append(a_2d, a_2d_ex, axis=1))
In [16]:
# print(np.append(a_2d, a_2d_ex, axis=2))
# AxisError: axis 2 is out of bounds for array of dimension 2
In [17]:
a_2d_ex2 = np.arange(2).reshape(1, 2) * 10
print(a_2d_ex2)
In [18]:
# print(np.append(a_2d, a_2d_ex2, axis=0))
# ValueError: all the input array dimensions except for the concatenation axis must match exactly
In [19]:
# print(np.append(a_2d, a_2d_ex2, axis=1))
# ValueError: all the input array dimensions except for the concatenation axis must match exactly
In [20]:
print(np.append(a_2d_ex, a_2d, axis=0))
In [21]:
print(np.append(a_2d_ex, a_2d, axis=1))
In [22]:
print(np.append(a_2d, [[0, 10, 20], [30, 40, 50]], axis=0))
In [23]:
a_row_1d = np.arange(3) * 10
print(a_row_1d)
In [24]:
# print(np.append(a_2d, a_row_1d, axis=0))
# ValueError: all the input arrays must have same number of dimensions
In [25]:
a_row_2d = np.arange(3).reshape(1, 3) * 100
print(a_row_2d)
In [26]:
print(np.append(a_2d, a_row_2d, axis=0))
In [27]:
print(np.append(a_2d, a_row_1d.reshape(1, 3), axis=0))
In [28]:
a_col_1d = np.arange(2) * 10
print(a_col_1d)
In [29]:
# print(np.append(a_2d, a_col_1d, axis=1))
# ValueError: all the input arrays must have same number of dimensions
In [30]:
a_col_2d = np.arange(2).reshape(2, 1) * 100
print(a_col_2d)
In [31]:
print(np.append(a_2d, a_col_2d, axis=1))
In [32]:
print(np.append(a_2d, a_col_1d.reshape(2, 1), axis=1))
In [33]:
print(np.vstack([a_2d, a_row_1d]))
In [34]:
print(np.vstack([a_row_2d, a_2d, a_row_1d, [[0, -1, -2], [-3, -4, -5]]]))
In [35]:
# print(np.hstack([a_2d, a_col_1d]))
# ValueError: all the input arrays must have same number of dimensions
In [36]:
print(np.hstack([a_col_2d, a_2d, a_col_1d.reshape(2, 1), [[0, -1], [-2, -3]]]))
In [37]:
a_3d = np.arange(12).reshape(2, 3, 2)
print(a_3d)
In [38]:
print(np.append(a_3d, 100))
In [39]:
a_3d_ex = np.arange(12).reshape(2, 3, 2) * 10
print(a_3d_ex)
In [40]:
print(a_3d_ex.shape)
In [41]:
print(np.append(a_3d, a_3d_ex, axis=0))
In [42]:
print(np.append(a_3d, a_3d_ex, axis=0).shape)
In [43]:
print(np.append(a_3d, a_3d_ex, axis=1))
In [44]:
print(np.append(a_3d, a_3d_ex, axis=1).shape)
In [45]:
print(np.append(a_3d, a_3d_ex, axis=2))
In [46]:
print(np.append(a_3d, a_3d_ex, axis=2).shape)
In [47]:
print(np.concatenate([a_3d_ex, a_3d, a_3d_ex], axis=2))