In [2]:
# %load /Users/facai/Study/book_notes/preconfig.py
%matplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
#sns.set(font='SimHei')
plt.rcParams['axes.grid'] = False

import numpy as np

#from IPython.display import SVG
def show_image(filename, figsize=None, res_dir=True):
    if figsize:
        plt.figure(figsize=figsize)

    if res_dir:
        filename = './res/{}'.format(filename)

    plt.imshow(plt.imread(filename))

Chapter 9 Convolutional Networks

Convolution is a specialized kind of linear operation.

9.1 The Convolution Operation

\begin{align} s(t) &= \int x(a) w(t-a) \mathrm{d}a \\ &= (x \ast w)(t) \end{align}

where $x$ is the input, $w$ is the kernel, and $s(t)$ is referred to as the feature map.

Since convolution is commutative,

\begin{align} S(i, j) &= (I \ast K)(i, j) &= \sum_m \sum_n I(m, n) K(i - m, j - n) \\ &= (K \ast I)(i, j) &= \sum_m \sum_n I(i - m, j - n) K(m, n) \end{align}

Many machine learning libraries implement cross-correlation but call it convolution.

Discrete convolution can be viewed as multiplication by a matrix.


In [5]:
show_image("fig9_1.png", figsize=(8, 8))


9.2 Motivation

Convolution leverages three important ideas:

  • sparse interactions: fewer parameters
  • parameter sharing: tied weights
  • equivariant representations:
    a function $f(x)$ is equivariant to a funtion $g$ if $f(g(x)) = g(f(x))$.

In [9]:
show_image("fig9_5.png", figsize=(8, 5))


9.3 Pooling

A pooling function replaces the output of the new at a certain location with a summary statistic of the nearby outputs.

popular pooling functions:

  • max
  • average
  • L2 norm
  • weighted average

strong prior: function must be invariant to small translations.


In [10]:
show_image("fig9_7.png", figsize=(10, 8))



In [11]:
show_image("fig9_9.png", figsize=(10, 8))


9.4 Convolution and Pooling as an Infinitely Strong Prior

Prior: weak or strong <== how concentrated the probability density in the prior is.

We can image a convolutional net as being similar to a fully connected net, but with an infinitely strong prior over its weights: the weights for one hidden unit must be identical to the weights of its neighbor, but shifted in space.

convolution and pooling can cause underfitting.

9.5 Variants of the Basic Convolution Function

4-D tensors: (batch_size, height, width, channels)

Three zero-padding:

  • valid convolution: m - k +1 = m - (k - 1)
  • same convolution: m,补零至核中心
  • full convolution: m + k - 1,补零至核边角

see details below.


In [14]:
show_image("matlab_conv_2d.png", figsize=(12, 8))



In [5]:
A = np.random.rand(3, 3)
A


Out[5]:
array([[ 0.35212801,  0.37922789,  0.65163256],
       [ 0.59534513,  0.74098237,  0.42971692],
       [ 0.73934346,  0.73590775,  0.10633755]])

In [6]:
B = np.random.rand(4, 4)
B


Out[6]:
array([[ 0.20413973,  0.24286469,  0.83290138,  0.30052197],
       [ 0.93643405,  0.41111035,  0.60742698,  0.0043744 ],
       [ 0.20255814,  0.3365866 ,  0.26242548,  0.85468478],
       [ 0.64287861,  0.38078144,  0.22940042,  0.62623427]])

In [54]:
def gen_kernel_fn(kernel):
    def kernel_fn(a, x_start, y_start):
        x_size, y_size = kernel.shape
        a_slice = a[x_start:x_start+x_size, y_start:y_start+y_size]
        return (a_slice * kernel).sum()
    return kernel_fn

def calc_conv2d_res_size(a, kernel):
    res_x_size = a.shape[0] - kernel.shape[0] + 1
    res_y_size = a.shape[1] - kernel.shape[1] + 1
    return res_x_size, res_y_size

def conv2d(a, kernel):
    kernel_fn = gen_kernel_fn(kernel)
    
    res_x_size, res_y_size = calc_conv2d_res_size(a, kernel)
    res = np.zeros((res_x_size, res_y_size))
    for x in range(res_x_size):
        for y in range(res_y_size):
            res[x, y] = kernel_fn(a, x, y)
    return res

In [71]:
# valid convolution
conv2d(B, A)


Out[71]:
array([[ 2.25524107,  1.82679291],
       [ 2.14415575,  1.6570156 ]])

In [68]:
def calc_2d_pad_width(target_size, real_size):
    pad_x_width = (target_size[0] - real_size[0]) / 2
    pad_y_width = (target_size[1] - real_size[1]) / 2
    return np.array([[pad_x_width] * 2, [pad_y_width] * 2], dtype=np.int)

In [81]:
def zero_pad_and_conv2d(a, kernel, target_size):
    res_size = calc_conv2d_res_size(a, kernel)
    pad_width = calc_2d_pad_width(target_size, res_size)
    a_pad = np.pad(a, pad_width, 'constant', constant_values=0)
    
    return conv2d(a_pad, kernel)

In [82]:
# same convolution
same_conv_size = B.shape
zero_pad_and_conv2d(B, A, same_conv_size)


Out[82]:
array([[ 0.98847255,  1.71888185,  1.64232006,  1.17086158],
       [ 1.29107212,  2.25524107,  1.82679291,  1.59511597],
       [ 1.43133448,  2.14415575,  1.6570156 ,  1.63554738],
       [ 0.93613643,  1.13343863,  1.44076255,  1.01712864]])

In [84]:
# full convolution
full_conv_size = [x1 + x2 for (x1, x2) in zip(B.shape, A.shape)]
print("full convolution size: {}".format(full_conv_size))
zero_pad_and_conv2d(B, A, full_conv_size)


full convolution size: [7, 7]
Out[84]:
array([[ 0.02170772,  0.17605365,  0.41822408,  0.82445577,  0.83695663,
         0.22218895],
       [ 0.1873004 ,  0.98847255,  1.71888185,  1.64232006,  1.17086158,
         0.18214847],
       [ 0.55696519,  1.29107212,  2.25524107,  1.82679291,  1.59511597,
         0.74033208],
       [ 0.76561571,  1.43133448,  2.14415575,  1.6570156 ,  1.63554738,
         0.97337498],
       [ 0.40824929,  0.93613643,  1.13343863,  1.44076255,  1.01712864,
         0.67378397],
       [ 0.41892063,  0.49192708,  0.52026328,  0.62915348,  0.31826381,
         0.22051462]])
Comparison of local connections, convolution, and full connections.

convolutional layers $\to$ tiled convolution $\to$ locally connected layer


In [15]:
show_image("fig9_16.png", figsize=(10, 8))


compute gradients: See Goodfellow (2010) for a full derivation of the equations in the fully general multi-dimensional, multi-example case.

9.6 Structured Outputs

Convolutional networks => output a high-dimensional, structured object. For example, to label every pixel in an image.

9.7 Data Types

Convolutional networks can porcess inputs with varying spatial extents which is the same kind of observations.

9.8 Efficient Convolution Algorithms

  • Fourier transform: point-wise multiplication in frequency domain.
  • Sometimes d-dimensional kernel is separable.

9.9 Random or Unsupervised Features

Today, most convolutinoal networks are trained in a purely supervised fashion.

9.10 The Neuroscientific Basis for Convolutional Networks

9.11 Convolutional Networks and the History of Deep Learning


In [ ]: