Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [14]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile('cifar-10-python.tar.gz'):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            'cifar-10-python.tar.gz',
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open('cifar-10-python.tar.gz') as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [15]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [16]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    return (x - x.min())/(x.max() - x.min())


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [17]:
from sklearn.preprocessing import LabelBinarizer
lb = LabelBinarizer()
lb.fit(np.arange(10))

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    arr = np.array(x)
    return lb.transform(arr)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [18]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [2]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=(None, image_shape[0], image_shape[1], image_shape[2]), name="x")


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=(None, n_classes), name="y")


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, name="keep_prob")


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [3]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # TODO: Implement Function
    x_depth = x_tensor.get_shape().as_list()[3]
    weight = tf.Variable(tf.truncated_normal([conv_ksize[0], conv_ksize[1], x_depth, conv_num_outputs], stddev=0.1))
    bias = tf.Variable(tf.zeros(conv_num_outputs))
    
    conv_layer = tf.nn.conv2d(x_tensor, weight, strides=[1, conv_strides[0], conv_strides[1], 1], padding='SAME')
    conv_layer = tf.nn.bias_add(conv_layer, bias)
    conv_layer = tf.nn.relu(conv_layer)
    conv_layer = tf.nn.max_pool(conv_layer, ksize=[1, pool_ksize[0], pool_ksize[1], 1], strides=[1, pool_strides[0], pool_strides[1], 1], padding='SAME')
    return conv_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [4]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    flat_size = tf.cast(shape[1]*shape[2]*shape[3], tf.int32)
    return tf.reshape(x_tensor, [-1, flat_size])


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [5]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    x_size = x_tensor.get_shape().as_list()[1]
    weight = tf.Variable(tf.truncated_normal([x_size, num_outputs], stddev=0.1))
    bias = tf.Variable(tf.zeros(num_outputs))
    
    fc_layer = tf.add(tf.matmul(x_tensor, weight), bias)
    fc_layer = tf.nn.relu(fc_layer)
    return fc_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [6]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    x_size = x_tensor.get_shape().as_list()[1]
    weight = tf.Variable(tf.truncated_normal([x_size, num_outputs], stddev=0.1))
    bias = tf.Variable(tf.zeros(num_outputs))
    
    return tf.add(tf.matmul(x_tensor, weight), bias)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [7]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    x_tensor = x
    x_tensor = conv2d_maxpool(x_tensor, 16, (5, 5), (1, 1), (2, 2), (2, 2))
    x_tensor = conv2d_maxpool(x_tensor, 32, (3, 3), (1, 1), (2, 2), (2, 2))
    x_tensor = conv2d_maxpool(x_tensor, 64, (3, 3), (1, 1), (2, 2), (2, 2))
    

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    x_tensor = flatten(x_tensor)
    

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    x_tensor = fully_conn(x_tensor, 1024)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob=keep_prob)
    x_tensor = fully_conn(x_tensor, 256)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob=keep_prob)
    x_tensor = fully_conn(x_tensor, 64)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob=keep_prob)
    
    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    x_tensor = output(x_tensor, 10)
    
    
    # TODO: return output
    return x_tensor


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [8]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    session.run(optimizer, feed_dict={x: feature_batch, y: label_batch, keep_prob: keep_probability})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [9]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    loss = sess.run(cost, feed_dict={x: feature_batch, y: label_batch, keep_prob: 1.})
    valid_acc = sess.run(accuracy, feed_dict={x: valid_features, y: valid_labels, keep_prob: 1.})
    print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(loss, valid_acc))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [10]:
# TODO: Tune Parameters
epochs = 100
batch_size = 4096
keep_probability = 0.5

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [37]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.2997 Validation Accuracy: 0.107600
Epoch  2, CIFAR-10 Batch 1:  Loss:     2.3000 Validation Accuracy: 0.122400
Epoch  3, CIFAR-10 Batch 1:  Loss:     2.3005 Validation Accuracy: 0.123400
Epoch  4, CIFAR-10 Batch 1:  Loss:     2.3002 Validation Accuracy: 0.101000
Epoch  5, CIFAR-10 Batch 1:  Loss:     2.3001 Validation Accuracy: 0.111000
Epoch  6, CIFAR-10 Batch 1:  Loss:     2.2997 Validation Accuracy: 0.129400
Epoch  7, CIFAR-10 Batch 1:  Loss:     2.2977 Validation Accuracy: 0.144600
Epoch  8, CIFAR-10 Batch 1:  Loss:     2.2940 Validation Accuracy: 0.146400
Epoch  9, CIFAR-10 Batch 1:  Loss:     2.2891 Validation Accuracy: 0.135000
Epoch 10, CIFAR-10 Batch 1:  Loss:     2.2850 Validation Accuracy: 0.120400
Epoch 11, CIFAR-10 Batch 1:  Loss:     2.2799 Validation Accuracy: 0.117000
Epoch 12, CIFAR-10 Batch 1:  Loss:     2.2731 Validation Accuracy: 0.122800
Epoch 13, CIFAR-10 Batch 1:  Loss:     2.2627 Validation Accuracy: 0.134000
Epoch 14, CIFAR-10 Batch 1:  Loss:     2.2499 Validation Accuracy: 0.154000
Epoch 15, CIFAR-10 Batch 1:  Loss:     2.2320 Validation Accuracy: 0.165600
Epoch 16, CIFAR-10 Batch 1:  Loss:     2.2061 Validation Accuracy: 0.184600
Epoch 17, CIFAR-10 Batch 1:  Loss:     2.1757 Validation Accuracy: 0.198000
Epoch 18, CIFAR-10 Batch 1:  Loss:     2.1431 Validation Accuracy: 0.201400
Epoch 19, CIFAR-10 Batch 1:  Loss:     2.1142 Validation Accuracy: 0.214800
Epoch 20, CIFAR-10 Batch 1:  Loss:     2.1132 Validation Accuracy: 0.224800
Epoch 21, CIFAR-10 Batch 1:  Loss:     2.0798 Validation Accuracy: 0.227800
Epoch 22, CIFAR-10 Batch 1:  Loss:     2.0497 Validation Accuracy: 0.242800
Epoch 23, CIFAR-10 Batch 1:  Loss:     2.0173 Validation Accuracy: 0.263000
Epoch 24, CIFAR-10 Batch 1:  Loss:     1.9820 Validation Accuracy: 0.275000
Epoch 25, CIFAR-10 Batch 1:  Loss:     1.9333 Validation Accuracy: 0.288200
Epoch 26, CIFAR-10 Batch 1:  Loss:     1.9124 Validation Accuracy: 0.298400
Epoch 27, CIFAR-10 Batch 1:  Loss:     1.8948 Validation Accuracy: 0.309600
Epoch 28, CIFAR-10 Batch 1:  Loss:     1.8691 Validation Accuracy: 0.317400
Epoch 29, CIFAR-10 Batch 1:  Loss:     1.8079 Validation Accuracy: 0.340600
Epoch 30, CIFAR-10 Batch 1:  Loss:     1.7617 Validation Accuracy: 0.346000
Epoch 31, CIFAR-10 Batch 1:  Loss:     1.7367 Validation Accuracy: 0.361400
Epoch 32, CIFAR-10 Batch 1:  Loss:     1.7045 Validation Accuracy: 0.376400
Epoch 33, CIFAR-10 Batch 1:  Loss:     1.6901 Validation Accuracy: 0.369400
Epoch 34, CIFAR-10 Batch 1:  Loss:     1.6705 Validation Accuracy: 0.363400
Epoch 35, CIFAR-10 Batch 1:  Loss:     1.6136 Validation Accuracy: 0.381400
Epoch 36, CIFAR-10 Batch 1:  Loss:     1.5884 Validation Accuracy: 0.366800
Epoch 37, CIFAR-10 Batch 1:  Loss:     1.5665 Validation Accuracy: 0.397200
Epoch 38, CIFAR-10 Batch 1:  Loss:     1.5212 Validation Accuracy: 0.404400
Epoch 39, CIFAR-10 Batch 1:  Loss:     1.4890 Validation Accuracy: 0.402800
Epoch 40, CIFAR-10 Batch 1:  Loss:     1.4664 Validation Accuracy: 0.412400
Epoch 41, CIFAR-10 Batch 1:  Loss:     1.4429 Validation Accuracy: 0.416400
Epoch 42, CIFAR-10 Batch 1:  Loss:     1.4349 Validation Accuracy: 0.416600
Epoch 43, CIFAR-10 Batch 1:  Loss:     1.3902 Validation Accuracy: 0.427600
Epoch 44, CIFAR-10 Batch 1:  Loss:     1.3668 Validation Accuracy: 0.432600
Epoch 45, CIFAR-10 Batch 1:  Loss:     1.3404 Validation Accuracy: 0.441000
Epoch 46, CIFAR-10 Batch 1:  Loss:     1.3293 Validation Accuracy: 0.431200
Epoch 47, CIFAR-10 Batch 1:  Loss:     1.3065 Validation Accuracy: 0.441600
Epoch 48, CIFAR-10 Batch 1:  Loss:     1.2935 Validation Accuracy: 0.445400
Epoch 49, CIFAR-10 Batch 1:  Loss:     1.2556 Validation Accuracy: 0.448600
Epoch 50, CIFAR-10 Batch 1:  Loss:     1.2097 Validation Accuracy: 0.462200
Epoch 51, CIFAR-10 Batch 1:  Loss:     1.1837 Validation Accuracy: 0.458000
Epoch 52, CIFAR-10 Batch 1:  Loss:     1.2003 Validation Accuracy: 0.449200
Epoch 53, CIFAR-10 Batch 1:  Loss:     1.1541 Validation Accuracy: 0.464000
Epoch 54, CIFAR-10 Batch 1:  Loss:     1.1591 Validation Accuracy: 0.459800
Epoch 55, CIFAR-10 Batch 1:  Loss:     1.0907 Validation Accuracy: 0.465600
Epoch 56, CIFAR-10 Batch 1:  Loss:     1.0666 Validation Accuracy: 0.476000
Epoch 57, CIFAR-10 Batch 1:  Loss:     1.0469 Validation Accuracy: 0.476200
Epoch 58, CIFAR-10 Batch 1:  Loss:     1.0346 Validation Accuracy: 0.481400
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.9996 Validation Accuracy: 0.481200
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.9721 Validation Accuracy: 0.490800
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.9433 Validation Accuracy: 0.487800
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.9229 Validation Accuracy: 0.487800
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.9114 Validation Accuracy: 0.490800
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.8918 Validation Accuracy: 0.491200
Epoch 65, CIFAR-10 Batch 1:  Loss:     0.8669 Validation Accuracy: 0.494800
Epoch 66, CIFAR-10 Batch 1:  Loss:     0.8573 Validation Accuracy: 0.495200
Epoch 67, CIFAR-10 Batch 1:  Loss:     0.8175 Validation Accuracy: 0.501400
Epoch 68, CIFAR-10 Batch 1:  Loss:     0.7952 Validation Accuracy: 0.504200
Epoch 69, CIFAR-10 Batch 1:  Loss:     0.7770 Validation Accuracy: 0.505800
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.7467 Validation Accuracy: 0.509400
Epoch 71, CIFAR-10 Batch 1:  Loss:     0.7411 Validation Accuracy: 0.509600
Epoch 72, CIFAR-10 Batch 1:  Loss:     0.7204 Validation Accuracy: 0.509000
Epoch 73, CIFAR-10 Batch 1:  Loss:     0.7178 Validation Accuracy: 0.506400
Epoch 74, CIFAR-10 Batch 1:  Loss:     0.6763 Validation Accuracy: 0.514400
Epoch 75, CIFAR-10 Batch 1:  Loss:     0.6575 Validation Accuracy: 0.517000
Epoch 76, CIFAR-10 Batch 1:  Loss:     0.6397 Validation Accuracy: 0.516200
Epoch 77, CIFAR-10 Batch 1:  Loss:     0.6147 Validation Accuracy: 0.522600
Epoch 78, CIFAR-10 Batch 1:  Loss:     0.5884 Validation Accuracy: 0.529600
Epoch 79, CIFAR-10 Batch 1:  Loss:     0.5870 Validation Accuracy: 0.509600
Epoch 80, CIFAR-10 Batch 1:  Loss:     0.5674 Validation Accuracy: 0.529800
Epoch 81, CIFAR-10 Batch 1:  Loss:     0.5513 Validation Accuracy: 0.526800
Epoch 82, CIFAR-10 Batch 1:  Loss:     0.5292 Validation Accuracy: 0.533200
Epoch 83, CIFAR-10 Batch 1:  Loss:     0.5231 Validation Accuracy: 0.531800
Epoch 84, CIFAR-10 Batch 1:  Loss:     0.4991 Validation Accuracy: 0.529600
Epoch 85, CIFAR-10 Batch 1:  Loss:     0.4669 Validation Accuracy: 0.540400
Epoch 86, CIFAR-10 Batch 1:  Loss:     0.4572 Validation Accuracy: 0.532200
Epoch 87, CIFAR-10 Batch 1:  Loss:     0.4540 Validation Accuracy: 0.529600
Epoch 88, CIFAR-10 Batch 1:  Loss:     0.4431 Validation Accuracy: 0.539800
Epoch 89, CIFAR-10 Batch 1:  Loss:     0.4226 Validation Accuracy: 0.535200
Epoch 90, CIFAR-10 Batch 1:  Loss:     0.3942 Validation Accuracy: 0.539200
Epoch 91, CIFAR-10 Batch 1:  Loss:     0.3885 Validation Accuracy: 0.540600
Epoch 92, CIFAR-10 Batch 1:  Loss:     0.4022 Validation Accuracy: 0.526200
Epoch 93, CIFAR-10 Batch 1:  Loss:     0.3789 Validation Accuracy: 0.541400
Epoch 94, CIFAR-10 Batch 1:  Loss:     0.3718 Validation Accuracy: 0.533000
Epoch 95, CIFAR-10 Batch 1:  Loss:     0.3448 Validation Accuracy: 0.544400
Epoch 96, CIFAR-10 Batch 1:  Loss:     0.3434 Validation Accuracy: 0.543400
Epoch 97, CIFAR-10 Batch 1:  Loss:     0.3280 Validation Accuracy: 0.543600
Epoch 98, CIFAR-10 Batch 1:  Loss:     0.3076 Validation Accuracy: 0.546000
Epoch 99, CIFAR-10 Batch 1:  Loss:     0.2946 Validation Accuracy: 0.548800
Epoch 100, CIFAR-10 Batch 1:  Loss:     0.2783 Validation Accuracy: 0.547400

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [11]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.3017 Validation Accuracy: 0.118800
Epoch  1, CIFAR-10 Batch 2:  Loss:     2.2989 Validation Accuracy: 0.127000
Epoch  1, CIFAR-10 Batch 3:  Loss:     2.3012 Validation Accuracy: 0.119200
Epoch  1, CIFAR-10 Batch 4:  Loss:     2.3013 Validation Accuracy: 0.121800
Epoch  1, CIFAR-10 Batch 5:  Loss:     2.3008 Validation Accuracy: 0.133200
Epoch  2, CIFAR-10 Batch 1:  Loss:     2.2981 Validation Accuracy: 0.150400
Epoch  2, CIFAR-10 Batch 2:  Loss:     2.2932 Validation Accuracy: 0.168600
Epoch  2, CIFAR-10 Batch 3:  Loss:     2.2870 Validation Accuracy: 0.149800
Epoch  2, CIFAR-10 Batch 4:  Loss:     2.2789 Validation Accuracy: 0.140600
Epoch  2, CIFAR-10 Batch 5:  Loss:     2.2671 Validation Accuracy: 0.161200
Epoch  3, CIFAR-10 Batch 1:  Loss:     2.2534 Validation Accuracy: 0.196000
Epoch  3, CIFAR-10 Batch 2:  Loss:     2.2259 Validation Accuracy: 0.205800
Epoch  3, CIFAR-10 Batch 3:  Loss:     2.1991 Validation Accuracy: 0.221000
Epoch  3, CIFAR-10 Batch 4:  Loss:     2.1499 Validation Accuracy: 0.213200
Epoch  3, CIFAR-10 Batch 5:  Loss:     2.1059 Validation Accuracy: 0.203400
Epoch  4, CIFAR-10 Batch 1:  Loss:     2.0973 Validation Accuracy: 0.228200
Epoch  4, CIFAR-10 Batch 2:  Loss:     2.0586 Validation Accuracy: 0.254800
Epoch  4, CIFAR-10 Batch 3:  Loss:     2.0783 Validation Accuracy: 0.245400
Epoch  4, CIFAR-10 Batch 4:  Loss:     2.0089 Validation Accuracy: 0.260600
Epoch  4, CIFAR-10 Batch 5:  Loss:     1.9898 Validation Accuracy: 0.282800
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.9582 Validation Accuracy: 0.304800
Epoch  5, CIFAR-10 Batch 2:  Loss:     1.8977 Validation Accuracy: 0.314600
Epoch  5, CIFAR-10 Batch 3:  Loss:     1.8851 Validation Accuracy: 0.332000
Epoch  5, CIFAR-10 Batch 4:  Loss:     1.8432 Validation Accuracy: 0.337000
Epoch  5, CIFAR-10 Batch 5:  Loss:     1.8491 Validation Accuracy: 0.358200
Epoch  6, CIFAR-10 Batch 1:  Loss:     1.8322 Validation Accuracy: 0.358400
Epoch  6, CIFAR-10 Batch 2:  Loss:     1.7736 Validation Accuracy: 0.363800
Epoch  6, CIFAR-10 Batch 3:  Loss:     1.7411 Validation Accuracy: 0.365000
Epoch  6, CIFAR-10 Batch 4:  Loss:     1.7148 Validation Accuracy: 0.361200
Epoch  6, CIFAR-10 Batch 5:  Loss:     1.7354 Validation Accuracy: 0.375600
Epoch  7, CIFAR-10 Batch 1:  Loss:     1.7154 Validation Accuracy: 0.393600
Epoch  7, CIFAR-10 Batch 2:  Loss:     1.7119 Validation Accuracy: 0.360600
Epoch  7, CIFAR-10 Batch 3:  Loss:     1.6493 Validation Accuracy: 0.379400
Epoch  7, CIFAR-10 Batch 4:  Loss:     1.6434 Validation Accuracy: 0.363800
Epoch  7, CIFAR-10 Batch 5:  Loss:     1.6477 Validation Accuracy: 0.398800
Epoch  8, CIFAR-10 Batch 1:  Loss:     1.6227 Validation Accuracy: 0.399600
Epoch  8, CIFAR-10 Batch 2:  Loss:     1.6105 Validation Accuracy: 0.413000
Epoch  8, CIFAR-10 Batch 3:  Loss:     1.5621 Validation Accuracy: 0.404400
Epoch  8, CIFAR-10 Batch 4:  Loss:     1.5573 Validation Accuracy: 0.408000
Epoch  8, CIFAR-10 Batch 5:  Loss:     1.5679 Validation Accuracy: 0.406200
Epoch  9, CIFAR-10 Batch 1:  Loss:     1.5409 Validation Accuracy: 0.431600
Epoch  9, CIFAR-10 Batch 2:  Loss:     1.5330 Validation Accuracy: 0.430000
Epoch  9, CIFAR-10 Batch 3:  Loss:     1.4736 Validation Accuracy: 0.431000
Epoch  9, CIFAR-10 Batch 4:  Loss:     1.4792 Validation Accuracy: 0.429600
Epoch  9, CIFAR-10 Batch 5:  Loss:     1.4922 Validation Accuracy: 0.425400
Epoch 10, CIFAR-10 Batch 1:  Loss:     1.4697 Validation Accuracy: 0.450200
Epoch 10, CIFAR-10 Batch 2:  Loss:     1.4852 Validation Accuracy: 0.450400
Epoch 10, CIFAR-10 Batch 3:  Loss:     1.4336 Validation Accuracy: 0.462200
Epoch 10, CIFAR-10 Batch 4:  Loss:     1.4253 Validation Accuracy: 0.456400
Epoch 10, CIFAR-10 Batch 5:  Loss:     1.4367 Validation Accuracy: 0.472000
Epoch 11, CIFAR-10 Batch 1:  Loss:     1.3962 Validation Accuracy: 0.471400
Epoch 11, CIFAR-10 Batch 2:  Loss:     1.4190 Validation Accuracy: 0.469600
Epoch 11, CIFAR-10 Batch 3:  Loss:     1.3747 Validation Accuracy: 0.467200
Epoch 11, CIFAR-10 Batch 4:  Loss:     1.3743 Validation Accuracy: 0.466600
Epoch 11, CIFAR-10 Batch 5:  Loss:     1.3843 Validation Accuracy: 0.478200
Epoch 12, CIFAR-10 Batch 1:  Loss:     1.3602 Validation Accuracy: 0.477000
Epoch 12, CIFAR-10 Batch 2:  Loss:     1.3572 Validation Accuracy: 0.481400
Epoch 12, CIFAR-10 Batch 3:  Loss:     1.3023 Validation Accuracy: 0.487800
Epoch 12, CIFAR-10 Batch 4:  Loss:     1.3013 Validation Accuracy: 0.492600
Epoch 12, CIFAR-10 Batch 5:  Loss:     1.2998 Validation Accuracy: 0.494400
Epoch 13, CIFAR-10 Batch 1:  Loss:     1.2992 Validation Accuracy: 0.492400
Epoch 13, CIFAR-10 Batch 2:  Loss:     1.3250 Validation Accuracy: 0.490400
Epoch 13, CIFAR-10 Batch 3:  Loss:     1.2561 Validation Accuracy: 0.497200
Epoch 13, CIFAR-10 Batch 4:  Loss:     1.2769 Validation Accuracy: 0.492800
Epoch 13, CIFAR-10 Batch 5:  Loss:     1.2658 Validation Accuracy: 0.501000
Epoch 14, CIFAR-10 Batch 1:  Loss:     1.2566 Validation Accuracy: 0.504000
Epoch 14, CIFAR-10 Batch 2:  Loss:     1.2569 Validation Accuracy: 0.512600
Epoch 14, CIFAR-10 Batch 3:  Loss:     1.1905 Validation Accuracy: 0.513600
Epoch 14, CIFAR-10 Batch 4:  Loss:     1.2114 Validation Accuracy: 0.512200
Epoch 14, CIFAR-10 Batch 5:  Loss:     1.1980 Validation Accuracy: 0.514400
Epoch 15, CIFAR-10 Batch 1:  Loss:     1.1915 Validation Accuracy: 0.521200
Epoch 15, CIFAR-10 Batch 2:  Loss:     1.2086 Validation Accuracy: 0.521400
Epoch 15, CIFAR-10 Batch 3:  Loss:     1.1637 Validation Accuracy: 0.519000
Epoch 15, CIFAR-10 Batch 4:  Loss:     1.1655 Validation Accuracy: 0.525200
Epoch 15, CIFAR-10 Batch 5:  Loss:     1.1630 Validation Accuracy: 0.526600
Epoch 16, CIFAR-10 Batch 1:  Loss:     1.1435 Validation Accuracy: 0.527000
Epoch 16, CIFAR-10 Batch 2:  Loss:     1.1546 Validation Accuracy: 0.530800
Epoch 16, CIFAR-10 Batch 3:  Loss:     1.1053 Validation Accuracy: 0.527400
Epoch 16, CIFAR-10 Batch 4:  Loss:     1.1023 Validation Accuracy: 0.537800
Epoch 16, CIFAR-10 Batch 5:  Loss:     1.0911 Validation Accuracy: 0.541000
Epoch 17, CIFAR-10 Batch 1:  Loss:     1.0965 Validation Accuracy: 0.538400
Epoch 17, CIFAR-10 Batch 2:  Loss:     1.1143 Validation Accuracy: 0.540000
Epoch 17, CIFAR-10 Batch 3:  Loss:     1.0538 Validation Accuracy: 0.538600
Epoch 17, CIFAR-10 Batch 4:  Loss:     1.0603 Validation Accuracy: 0.545200
Epoch 17, CIFAR-10 Batch 5:  Loss:     1.0595 Validation Accuracy: 0.546600
Epoch 18, CIFAR-10 Batch 1:  Loss:     1.0713 Validation Accuracy: 0.536200
Epoch 18, CIFAR-10 Batch 2:  Loss:     1.0961 Validation Accuracy: 0.544400
Epoch 18, CIFAR-10 Batch 3:  Loss:     1.0501 Validation Accuracy: 0.535400
Epoch 18, CIFAR-10 Batch 4:  Loss:     1.0319 Validation Accuracy: 0.544000
Epoch 18, CIFAR-10 Batch 5:  Loss:     1.0259 Validation Accuracy: 0.548600
Epoch 19, CIFAR-10 Batch 1:  Loss:     1.0157 Validation Accuracy: 0.557800
Epoch 19, CIFAR-10 Batch 2:  Loss:     1.0498 Validation Accuracy: 0.550800
Epoch 19, CIFAR-10 Batch 3:  Loss:     0.9891 Validation Accuracy: 0.554400
Epoch 19, CIFAR-10 Batch 4:  Loss:     0.9715 Validation Accuracy: 0.551200
Epoch 19, CIFAR-10 Batch 5:  Loss:     0.9522 Validation Accuracy: 0.557200
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.9752 Validation Accuracy: 0.555400
Epoch 20, CIFAR-10 Batch 2:  Loss:     1.0154 Validation Accuracy: 0.561000
Epoch 20, CIFAR-10 Batch 3:  Loss:     0.9375 Validation Accuracy: 0.569400
Epoch 20, CIFAR-10 Batch 4:  Loss:     0.9230 Validation Accuracy: 0.571200
Epoch 20, CIFAR-10 Batch 5:  Loss:     0.9059 Validation Accuracy: 0.567000
Epoch 21, CIFAR-10 Batch 1:  Loss:     0.9404 Validation Accuracy: 0.561200
Epoch 21, CIFAR-10 Batch 2:  Loss:     0.9698 Validation Accuracy: 0.571000
Epoch 21, CIFAR-10 Batch 3:  Loss:     0.9049 Validation Accuracy: 0.564600
Epoch 21, CIFAR-10 Batch 4:  Loss:     0.9210 Validation Accuracy: 0.564600
Epoch 21, CIFAR-10 Batch 5:  Loss:     0.8631 Validation Accuracy: 0.577200
Epoch 22, CIFAR-10 Batch 1:  Loss:     0.8886 Validation Accuracy: 0.576400
Epoch 22, CIFAR-10 Batch 2:  Loss:     0.9153 Validation Accuracy: 0.579600
Epoch 22, CIFAR-10 Batch 3:  Loss:     0.8751 Validation Accuracy: 0.583200
Epoch 22, CIFAR-10 Batch 4:  Loss:     0.8568 Validation Accuracy: 0.577800
Epoch 22, CIFAR-10 Batch 5:  Loss:     0.8258 Validation Accuracy: 0.580200
Epoch 23, CIFAR-10 Batch 1:  Loss:     0.8662 Validation Accuracy: 0.574800
Epoch 23, CIFAR-10 Batch 2:  Loss:     0.8764 Validation Accuracy: 0.583600
Epoch 23, CIFAR-10 Batch 3:  Loss:     0.8344 Validation Accuracy: 0.586800
Epoch 23, CIFAR-10 Batch 4:  Loss:     0.8136 Validation Accuracy: 0.590600
Epoch 23, CIFAR-10 Batch 5:  Loss:     0.7810 Validation Accuracy: 0.589400
Epoch 24, CIFAR-10 Batch 1:  Loss:     0.8313 Validation Accuracy: 0.585600
Epoch 24, CIFAR-10 Batch 2:  Loss:     0.8626 Validation Accuracy: 0.585200
Epoch 24, CIFAR-10 Batch 3:  Loss:     0.8103 Validation Accuracy: 0.588200
Epoch 24, CIFAR-10 Batch 4:  Loss:     0.7814 Validation Accuracy: 0.601400
Epoch 24, CIFAR-10 Batch 5:  Loss:     0.7478 Validation Accuracy: 0.589400
Epoch 25, CIFAR-10 Batch 1:  Loss:     0.8056 Validation Accuracy: 0.584400
Epoch 25, CIFAR-10 Batch 2:  Loss:     0.8019 Validation Accuracy: 0.601200
Epoch 25, CIFAR-10 Batch 3:  Loss:     0.7827 Validation Accuracy: 0.595000
Epoch 25, CIFAR-10 Batch 4:  Loss:     0.7796 Validation Accuracy: 0.596600
Epoch 25, CIFAR-10 Batch 5:  Loss:     0.7205 Validation Accuracy: 0.599600
Epoch 26, CIFAR-10 Batch 1:  Loss:     0.7500 Validation Accuracy: 0.601400
Epoch 26, CIFAR-10 Batch 2:  Loss:     0.7780 Validation Accuracy: 0.603000
Epoch 26, CIFAR-10 Batch 3:  Loss:     0.7201 Validation Accuracy: 0.606600
Epoch 26, CIFAR-10 Batch 4:  Loss:     0.7415 Validation Accuracy: 0.591200
Epoch 26, CIFAR-10 Batch 5:  Loss:     0.6795 Validation Accuracy: 0.607600
Epoch 27, CIFAR-10 Batch 1:  Loss:     0.7296 Validation Accuracy: 0.602600
Epoch 27, CIFAR-10 Batch 2:  Loss:     0.7462 Validation Accuracy: 0.613000
Epoch 27, CIFAR-10 Batch 3:  Loss:     0.7151 Validation Accuracy: 0.611400
Epoch 27, CIFAR-10 Batch 4:  Loss:     0.7022 Validation Accuracy: 0.607200
Epoch 27, CIFAR-10 Batch 5:  Loss:     0.6447 Validation Accuracy: 0.611200
Epoch 28, CIFAR-10 Batch 1:  Loss:     0.6867 Validation Accuracy: 0.604200
Epoch 28, CIFAR-10 Batch 2:  Loss:     0.7072 Validation Accuracy: 0.609600
Epoch 28, CIFAR-10 Batch 3:  Loss:     0.6752 Validation Accuracy: 0.605600
Epoch 28, CIFAR-10 Batch 4:  Loss:     0.6679 Validation Accuracy: 0.608600
Epoch 28, CIFAR-10 Batch 5:  Loss:     0.6200 Validation Accuracy: 0.614200
Epoch 29, CIFAR-10 Batch 1:  Loss:     0.6454 Validation Accuracy: 0.615400
Epoch 29, CIFAR-10 Batch 2:  Loss:     0.6645 Validation Accuracy: 0.620800
Epoch 29, CIFAR-10 Batch 3:  Loss:     0.6280 Validation Accuracy: 0.623400
Epoch 29, CIFAR-10 Batch 4:  Loss:     0.6272 Validation Accuracy: 0.610800
Epoch 29, CIFAR-10 Batch 5:  Loss:     0.5906 Validation Accuracy: 0.617800
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.6205 Validation Accuracy: 0.617800
Epoch 30, CIFAR-10 Batch 2:  Loss:     0.6491 Validation Accuracy: 0.620600
Epoch 30, CIFAR-10 Batch 3:  Loss:     0.6177 Validation Accuracy: 0.619800
Epoch 30, CIFAR-10 Batch 4:  Loss:     0.6069 Validation Accuracy: 0.624200
Epoch 30, CIFAR-10 Batch 5:  Loss:     0.5470 Validation Accuracy: 0.623600
Epoch 31, CIFAR-10 Batch 1:  Loss:     0.5718 Validation Accuracy: 0.629400
Epoch 31, CIFAR-10 Batch 2:  Loss:     0.5986 Validation Accuracy: 0.630200
Epoch 31, CIFAR-10 Batch 3:  Loss:     0.5651 Validation Accuracy: 0.630600
Epoch 31, CIFAR-10 Batch 4:  Loss:     0.5863 Validation Accuracy: 0.623200
Epoch 31, CIFAR-10 Batch 5:  Loss:     0.5336 Validation Accuracy: 0.631200
Epoch 32, CIFAR-10 Batch 1:  Loss:     0.5634 Validation Accuracy: 0.632800
Epoch 32, CIFAR-10 Batch 2:  Loss:     0.5794 Validation Accuracy: 0.628200
Epoch 32, CIFAR-10 Batch 3:  Loss:     0.5426 Validation Accuracy: 0.633000
Epoch 32, CIFAR-10 Batch 4:  Loss:     0.5274 Validation Accuracy: 0.623600
Epoch 32, CIFAR-10 Batch 5:  Loss:     0.4987 Validation Accuracy: 0.625600
Epoch 33, CIFAR-10 Batch 1:  Loss:     0.5218 Validation Accuracy: 0.632000
Epoch 33, CIFAR-10 Batch 2:  Loss:     0.5441 Validation Accuracy: 0.628400
Epoch 33, CIFAR-10 Batch 3:  Loss:     0.5316 Validation Accuracy: 0.634000
Epoch 33, CIFAR-10 Batch 4:  Loss:     0.5245 Validation Accuracy: 0.623400
Epoch 33, CIFAR-10 Batch 5:  Loss:     0.4760 Validation Accuracy: 0.637000
Epoch 34, CIFAR-10 Batch 1:  Loss:     0.4964 Validation Accuracy: 0.631200
Epoch 34, CIFAR-10 Batch 2:  Loss:     0.5254 Validation Accuracy: 0.642600
Epoch 34, CIFAR-10 Batch 3:  Loss:     0.4801 Validation Accuracy: 0.639600
Epoch 34, CIFAR-10 Batch 4:  Loss:     0.4886 Validation Accuracy: 0.633800
Epoch 34, CIFAR-10 Batch 5:  Loss:     0.4553 Validation Accuracy: 0.640200
Epoch 35, CIFAR-10 Batch 1:  Loss:     0.4752 Validation Accuracy: 0.638000
Epoch 35, CIFAR-10 Batch 2:  Loss:     0.4933 Validation Accuracy: 0.642200
Epoch 35, CIFAR-10 Batch 3:  Loss:     0.4675 Validation Accuracy: 0.634000
Epoch 35, CIFAR-10 Batch 4:  Loss:     0.4679 Validation Accuracy: 0.632400
Epoch 35, CIFAR-10 Batch 5:  Loss:     0.4247 Validation Accuracy: 0.640200
Epoch 36, CIFAR-10 Batch 1:  Loss:     0.4475 Validation Accuracy: 0.643200
Epoch 36, CIFAR-10 Batch 2:  Loss:     0.4580 Validation Accuracy: 0.643600
Epoch 36, CIFAR-10 Batch 3:  Loss:     0.4291 Validation Accuracy: 0.647000
Epoch 36, CIFAR-10 Batch 4:  Loss:     0.4429 Validation Accuracy: 0.631600
Epoch 36, CIFAR-10 Batch 5:  Loss:     0.4328 Validation Accuracy: 0.639800
Epoch 37, CIFAR-10 Batch 1:  Loss:     0.4465 Validation Accuracy: 0.637000
Epoch 37, CIFAR-10 Batch 2:  Loss:     0.4346 Validation Accuracy: 0.648800
Epoch 37, CIFAR-10 Batch 3:  Loss:     0.3998 Validation Accuracy: 0.650200
Epoch 37, CIFAR-10 Batch 4:  Loss:     0.4194 Validation Accuracy: 0.642600
Epoch 37, CIFAR-10 Batch 5:  Loss:     0.3890 Validation Accuracy: 0.643000
Epoch 38, CIFAR-10 Batch 1:  Loss:     0.4457 Validation Accuracy: 0.619800
Epoch 38, CIFAR-10 Batch 2:  Loss:     0.4769 Validation Accuracy: 0.618800
Epoch 38, CIFAR-10 Batch 3:  Loss:     0.4816 Validation Accuracy: 0.619000
Epoch 38, CIFAR-10 Batch 4:  Loss:     0.4401 Validation Accuracy: 0.630000
Epoch 38, CIFAR-10 Batch 5:  Loss:     0.4210 Validation Accuracy: 0.628800
Epoch 39, CIFAR-10 Batch 1:  Loss:     0.4141 Validation Accuracy: 0.642800
Epoch 39, CIFAR-10 Batch 2:  Loss:     0.4150 Validation Accuracy: 0.648600
Epoch 39, CIFAR-10 Batch 3:  Loss:     0.3766 Validation Accuracy: 0.650600
Epoch 39, CIFAR-10 Batch 4:  Loss:     0.3752 Validation Accuracy: 0.638400
Epoch 39, CIFAR-10 Batch 5:  Loss:     0.3464 Validation Accuracy: 0.645400
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.3739 Validation Accuracy: 0.648200
Epoch 40, CIFAR-10 Batch 2:  Loss:     0.3856 Validation Accuracy: 0.641000
Epoch 40, CIFAR-10 Batch 3:  Loss:     0.3671 Validation Accuracy: 0.643200
Epoch 40, CIFAR-10 Batch 4:  Loss:     0.3592 Validation Accuracy: 0.641800
Epoch 40, CIFAR-10 Batch 5:  Loss:     0.3412 Validation Accuracy: 0.649600
Epoch 41, CIFAR-10 Batch 1:  Loss:     0.3532 Validation Accuracy: 0.644800
Epoch 41, CIFAR-10 Batch 2:  Loss:     0.3539 Validation Accuracy: 0.656600
Epoch 41, CIFAR-10 Batch 3:  Loss:     0.3390 Validation Accuracy: 0.649800
Epoch 41, CIFAR-10 Batch 4:  Loss:     0.3353 Validation Accuracy: 0.648600
Epoch 41, CIFAR-10 Batch 5:  Loss:     0.3128 Validation Accuracy: 0.647200
Epoch 42, CIFAR-10 Batch 1:  Loss:     0.3417 Validation Accuracy: 0.648800
Epoch 42, CIFAR-10 Batch 2:  Loss:     0.3382 Validation Accuracy: 0.644800
Epoch 42, CIFAR-10 Batch 3:  Loss:     0.3409 Validation Accuracy: 0.651600
Epoch 42, CIFAR-10 Batch 4:  Loss:     0.3328 Validation Accuracy: 0.641000
Epoch 42, CIFAR-10 Batch 5:  Loss:     0.3213 Validation Accuracy: 0.641800
Epoch 43, CIFAR-10 Batch 1:  Loss:     0.3516 Validation Accuracy: 0.637800
Epoch 43, CIFAR-10 Batch 2:  Loss:     0.3375 Validation Accuracy: 0.650600
Epoch 43, CIFAR-10 Batch 3:  Loss:     0.3180 Validation Accuracy: 0.657200
Epoch 43, CIFAR-10 Batch 4:  Loss:     0.3041 Validation Accuracy: 0.658400
Epoch 43, CIFAR-10 Batch 5:  Loss:     0.2736 Validation Accuracy: 0.655200
Epoch 44, CIFAR-10 Batch 1:  Loss:     0.3420 Validation Accuracy: 0.625200
Epoch 44, CIFAR-10 Batch 2:  Loss:     0.3756 Validation Accuracy: 0.625400
Epoch 44, CIFAR-10 Batch 3:  Loss:     0.3718 Validation Accuracy: 0.622800
Epoch 44, CIFAR-10 Batch 4:  Loss:     0.3574 Validation Accuracy: 0.630400
Epoch 44, CIFAR-10 Batch 5:  Loss:     0.3233 Validation Accuracy: 0.640800
Epoch 45, CIFAR-10 Batch 1:  Loss:     0.3375 Validation Accuracy: 0.651400
Epoch 45, CIFAR-10 Batch 2:  Loss:     0.3274 Validation Accuracy: 0.656800
Epoch 45, CIFAR-10 Batch 3:  Loss:     0.2901 Validation Accuracy: 0.663600
Epoch 45, CIFAR-10 Batch 4:  Loss:     0.2854 Validation Accuracy: 0.648200
Epoch 45, CIFAR-10 Batch 5:  Loss:     0.2827 Validation Accuracy: 0.654400
Epoch 46, CIFAR-10 Batch 1:  Loss:     0.2824 Validation Accuracy: 0.654600
Epoch 46, CIFAR-10 Batch 2:  Loss:     0.3044 Validation Accuracy: 0.643600
Epoch 46, CIFAR-10 Batch 3:  Loss:     0.2945 Validation Accuracy: 0.648600
Epoch 46, CIFAR-10 Batch 4:  Loss:     0.2665 Validation Accuracy: 0.652000
Epoch 46, CIFAR-10 Batch 5:  Loss:     0.2553 Validation Accuracy: 0.656800
Epoch 47, CIFAR-10 Batch 1:  Loss:     0.2584 Validation Accuracy: 0.663200
Epoch 47, CIFAR-10 Batch 2:  Loss:     0.2731 Validation Accuracy: 0.669600
Epoch 47, CIFAR-10 Batch 3:  Loss:     0.2543 Validation Accuracy: 0.667000
Epoch 47, CIFAR-10 Batch 4:  Loss:     0.2273 Validation Accuracy: 0.665200
Epoch 47, CIFAR-10 Batch 5:  Loss:     0.2155 Validation Accuracy: 0.658600
Epoch 48, CIFAR-10 Batch 1:  Loss:     0.2242 Validation Accuracy: 0.655200
Epoch 48, CIFAR-10 Batch 2:  Loss:     0.2495 Validation Accuracy: 0.658800
Epoch 48, CIFAR-10 Batch 3:  Loss:     0.2549 Validation Accuracy: 0.655200
Epoch 48, CIFAR-10 Batch 4:  Loss:     0.2262 Validation Accuracy: 0.668200
Epoch 48, CIFAR-10 Batch 5:  Loss:     0.2151 Validation Accuracy: 0.658200
Epoch 49, CIFAR-10 Batch 1:  Loss:     0.2270 Validation Accuracy: 0.662400
Epoch 49, CIFAR-10 Batch 2:  Loss:     0.2343 Validation Accuracy: 0.666400
Epoch 49, CIFAR-10 Batch 3:  Loss:     0.2275 Validation Accuracy: 0.672000
Epoch 49, CIFAR-10 Batch 4:  Loss:     0.2068 Validation Accuracy: 0.668800
Epoch 49, CIFAR-10 Batch 5:  Loss:     0.1973 Validation Accuracy: 0.661000
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.2214 Validation Accuracy: 0.646200
Epoch 50, CIFAR-10 Batch 2:  Loss:     0.2511 Validation Accuracy: 0.645000
Epoch 50, CIFAR-10 Batch 3:  Loss:     0.2797 Validation Accuracy: 0.628000
Epoch 50, CIFAR-10 Batch 4:  Loss:     0.2405 Validation Accuracy: 0.641200
Epoch 50, CIFAR-10 Batch 5:  Loss:     0.2482 Validation Accuracy: 0.644800
Epoch 51, CIFAR-10 Batch 1:  Loss:     0.2330 Validation Accuracy: 0.655000
Epoch 51, CIFAR-10 Batch 2:  Loss:     0.2423 Validation Accuracy: 0.660200
Epoch 51, CIFAR-10 Batch 3:  Loss:     0.2188 Validation Accuracy: 0.664800
Epoch 51, CIFAR-10 Batch 4:  Loss:     0.2019 Validation Accuracy: 0.664800
Epoch 51, CIFAR-10 Batch 5:  Loss:     0.1822 Validation Accuracy: 0.667400
Epoch 52, CIFAR-10 Batch 1:  Loss:     0.1865 Validation Accuracy: 0.655600
Epoch 52, CIFAR-10 Batch 2:  Loss:     0.1986 Validation Accuracy: 0.661200
Epoch 52, CIFAR-10 Batch 3:  Loss:     0.1959 Validation Accuracy: 0.675600
Epoch 52, CIFAR-10 Batch 4:  Loss:     0.1715 Validation Accuracy: 0.670200
Epoch 52, CIFAR-10 Batch 5:  Loss:     0.1691 Validation Accuracy: 0.665000
Epoch 53, CIFAR-10 Batch 1:  Loss:     0.1792 Validation Accuracy: 0.654800
Epoch 53, CIFAR-10 Batch 2:  Loss:     0.1834 Validation Accuracy: 0.664600
Epoch 53, CIFAR-10 Batch 3:  Loss:     0.1816 Validation Accuracy: 0.668400
Epoch 53, CIFAR-10 Batch 4:  Loss:     0.1561 Validation Accuracy: 0.673200
Epoch 53, CIFAR-10 Batch 5:  Loss:     0.1611 Validation Accuracy: 0.666200
Epoch 54, CIFAR-10 Batch 1:  Loss:     0.1584 Validation Accuracy: 0.663200
Epoch 54, CIFAR-10 Batch 2:  Loss:     0.1630 Validation Accuracy: 0.671400
Epoch 54, CIFAR-10 Batch 3:  Loss:     0.1609 Validation Accuracy: 0.676200
Epoch 54, CIFAR-10 Batch 4:  Loss:     0.1478 Validation Accuracy: 0.667800
Epoch 54, CIFAR-10 Batch 5:  Loss:     0.1461 Validation Accuracy: 0.665800
Epoch 55, CIFAR-10 Batch 1:  Loss:     0.1525 Validation Accuracy: 0.658800
Epoch 55, CIFAR-10 Batch 2:  Loss:     0.1576 Validation Accuracy: 0.667800
Epoch 55, CIFAR-10 Batch 3:  Loss:     0.1637 Validation Accuracy: 0.666800
Epoch 55, CIFAR-10 Batch 4:  Loss:     0.1453 Validation Accuracy: 0.670400
Epoch 55, CIFAR-10 Batch 5:  Loss:     0.1439 Validation Accuracy: 0.662400
Epoch 56, CIFAR-10 Batch 1:  Loss:     0.1464 Validation Accuracy: 0.659800
Epoch 56, CIFAR-10 Batch 2:  Loss:     0.1549 Validation Accuracy: 0.673600
Epoch 56, CIFAR-10 Batch 3:  Loss:     0.1481 Validation Accuracy: 0.670000
Epoch 56, CIFAR-10 Batch 4:  Loss:     0.1335 Validation Accuracy: 0.673600
Epoch 56, CIFAR-10 Batch 5:  Loss:     0.1488 Validation Accuracy: 0.667200
Epoch 57, CIFAR-10 Batch 1:  Loss:     0.1413 Validation Accuracy: 0.655400
Epoch 57, CIFAR-10 Batch 2:  Loss:     0.1511 Validation Accuracy: 0.666600
Epoch 57, CIFAR-10 Batch 3:  Loss:     0.1566 Validation Accuracy: 0.659000
Epoch 57, CIFAR-10 Batch 4:  Loss:     0.1397 Validation Accuracy: 0.645400
Epoch 57, CIFAR-10 Batch 5:  Loss:     0.1712 Validation Accuracy: 0.651200
Epoch 58, CIFAR-10 Batch 1:  Loss:     0.1512 Validation Accuracy: 0.655600
Epoch 58, CIFAR-10 Batch 2:  Loss:     0.1596 Validation Accuracy: 0.662600
Epoch 58, CIFAR-10 Batch 3:  Loss:     0.1514 Validation Accuracy: 0.665000
Epoch 58, CIFAR-10 Batch 4:  Loss:     0.1543 Validation Accuracy: 0.643400
Epoch 58, CIFAR-10 Batch 5:  Loss:     0.1572 Validation Accuracy: 0.651200
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.1557 Validation Accuracy: 0.655800
Epoch 59, CIFAR-10 Batch 2:  Loss:     0.1845 Validation Accuracy: 0.651200
Epoch 59, CIFAR-10 Batch 3:  Loss:     0.1905 Validation Accuracy: 0.644000
Epoch 59, CIFAR-10 Batch 4:  Loss:     0.1450 Validation Accuracy: 0.654000
Epoch 59, CIFAR-10 Batch 5:  Loss:     0.1382 Validation Accuracy: 0.669200
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.1460 Validation Accuracy: 0.667600
Epoch 60, CIFAR-10 Batch 2:  Loss:     0.1652 Validation Accuracy: 0.654200
Epoch 60, CIFAR-10 Batch 3:  Loss:     0.1705 Validation Accuracy: 0.657800
Epoch 60, CIFAR-10 Batch 4:  Loss:     0.1502 Validation Accuracy: 0.652800
Epoch 60, CIFAR-10 Batch 5:  Loss:     0.1603 Validation Accuracy: 0.639800
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.1721 Validation Accuracy: 0.651400
Epoch 61, CIFAR-10 Batch 2:  Loss:     0.1761 Validation Accuracy: 0.656600
Epoch 61, CIFAR-10 Batch 3:  Loss:     0.1368 Validation Accuracy: 0.678200
Epoch 61, CIFAR-10 Batch 4:  Loss:     0.1232 Validation Accuracy: 0.663200
Epoch 61, CIFAR-10 Batch 5:  Loss:     0.1252 Validation Accuracy: 0.658800
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.1283 Validation Accuracy: 0.656000
Epoch 62, CIFAR-10 Batch 2:  Loss:     0.1331 Validation Accuracy: 0.662800
Epoch 62, CIFAR-10 Batch 3:  Loss:     0.1242 Validation Accuracy: 0.673800
Epoch 62, CIFAR-10 Batch 4:  Loss:     0.1098 Validation Accuracy: 0.665600
Epoch 62, CIFAR-10 Batch 5:  Loss:     0.0995 Validation Accuracy: 0.665400
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.1155 Validation Accuracy: 0.667800
Epoch 63, CIFAR-10 Batch 2:  Loss:     0.1097 Validation Accuracy: 0.675000
Epoch 63, CIFAR-10 Batch 3:  Loss:     0.1229 Validation Accuracy: 0.669400
Epoch 63, CIFAR-10 Batch 4:  Loss:     0.1137 Validation Accuracy: 0.655600
Epoch 63, CIFAR-10 Batch 5:  Loss:     0.1342 Validation Accuracy: 0.648000
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.1324 Validation Accuracy: 0.655000
Epoch 64, CIFAR-10 Batch 2:  Loss:     0.1377 Validation Accuracy: 0.658800
Epoch 64, CIFAR-10 Batch 3:  Loss:     0.1432 Validation Accuracy: 0.654800
Epoch 64, CIFAR-10 Batch 4:  Loss:     0.1411 Validation Accuracy: 0.640200
Epoch 64, CIFAR-10 Batch 5:  Loss:     0.1209 Validation Accuracy: 0.661400
Epoch 65, CIFAR-10 Batch 1:  Loss:     0.1136 Validation Accuracy: 0.659400
Epoch 65, CIFAR-10 Batch 2:  Loss:     0.1279 Validation Accuracy: 0.655400
Epoch 65, CIFAR-10 Batch 3:  Loss:     0.1633 Validation Accuracy: 0.644800
Epoch 65, CIFAR-10 Batch 4:  Loss:     0.1384 Validation Accuracy: 0.639600
Epoch 65, CIFAR-10 Batch 5:  Loss:     0.1284 Validation Accuracy: 0.665600
Epoch 66, CIFAR-10 Batch 1:  Loss:     0.1204 Validation Accuracy: 0.667800
Epoch 66, CIFAR-10 Batch 2:  Loss:     0.1156 Validation Accuracy: 0.666000
Epoch 66, CIFAR-10 Batch 3:  Loss:     0.1132 Validation Accuracy: 0.669000
Epoch 66, CIFAR-10 Batch 4:  Loss:     0.0958 Validation Accuracy: 0.674800
Epoch 66, CIFAR-10 Batch 5:  Loss:     0.0943 Validation Accuracy: 0.671000
Epoch 67, CIFAR-10 Batch 1:  Loss:     0.1010 Validation Accuracy: 0.669600
Epoch 67, CIFAR-10 Batch 2:  Loss:     0.0929 Validation Accuracy: 0.659800
Epoch 67, CIFAR-10 Batch 3:  Loss:     0.0983 Validation Accuracy: 0.676800
Epoch 67, CIFAR-10 Batch 4:  Loss:     0.0790 Validation Accuracy: 0.675800
Epoch 67, CIFAR-10 Batch 5:  Loss:     0.0721 Validation Accuracy: 0.681400
Epoch 68, CIFAR-10 Batch 1:  Loss:     0.0769 Validation Accuracy: 0.678800
Epoch 68, CIFAR-10 Batch 2:  Loss:     0.0773 Validation Accuracy: 0.670600
Epoch 68, CIFAR-10 Batch 3:  Loss:     0.0842 Validation Accuracy: 0.681600
Epoch 68, CIFAR-10 Batch 4:  Loss:     0.0783 Validation Accuracy: 0.675200
Epoch 68, CIFAR-10 Batch 5:  Loss:     0.0770 Validation Accuracy: 0.666600
Epoch 69, CIFAR-10 Batch 1:  Loss:     0.0915 Validation Accuracy: 0.667600
Epoch 69, CIFAR-10 Batch 2:  Loss:     0.0818 Validation Accuracy: 0.663800
Epoch 69, CIFAR-10 Batch 3:  Loss:     0.0891 Validation Accuracy: 0.673600
Epoch 69, CIFAR-10 Batch 4:  Loss:     0.0728 Validation Accuracy: 0.671400
Epoch 69, CIFAR-10 Batch 5:  Loss:     0.0763 Validation Accuracy: 0.672400
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.0662 Validation Accuracy: 0.677200
Epoch 70, CIFAR-10 Batch 2:  Loss:     0.0692 Validation Accuracy: 0.670600
Epoch 70, CIFAR-10 Batch 3:  Loss:     0.0743 Validation Accuracy: 0.677200
Epoch 70, CIFAR-10 Batch 4:  Loss:     0.0676 Validation Accuracy: 0.672600
Epoch 70, CIFAR-10 Batch 5:  Loss:     0.0693 Validation Accuracy: 0.664000
Epoch 71, CIFAR-10 Batch 1:  Loss:     0.0834 Validation Accuracy: 0.674200
Epoch 71, CIFAR-10 Batch 2:  Loss:     0.0791 Validation Accuracy: 0.661000
Epoch 71, CIFAR-10 Batch 3:  Loss:     0.0975 Validation Accuracy: 0.670800
Epoch 71, CIFAR-10 Batch 4:  Loss:     0.0676 Validation Accuracy: 0.673200
Epoch 71, CIFAR-10 Batch 5:  Loss:     0.0661 Validation Accuracy: 0.676200
Epoch 72, CIFAR-10 Batch 1:  Loss:     0.0599 Validation Accuracy: 0.680200
Epoch 72, CIFAR-10 Batch 2:  Loss:     0.0591 Validation Accuracy: 0.682200
Epoch 72, CIFAR-10 Batch 3:  Loss:     0.0645 Validation Accuracy: 0.680200
Epoch 72, CIFAR-10 Batch 4:  Loss:     0.0551 Validation Accuracy: 0.682000
Epoch 72, CIFAR-10 Batch 5:  Loss:     0.0532 Validation Accuracy: 0.675400
Epoch 73, CIFAR-10 Batch 1:  Loss:     0.0638 Validation Accuracy: 0.676000
Epoch 73, CIFAR-10 Batch 2:  Loss:     0.0558 Validation Accuracy: 0.671800
Epoch 73, CIFAR-10 Batch 3:  Loss:     0.0713 Validation Accuracy: 0.682600
Epoch 73, CIFAR-10 Batch 4:  Loss:     0.0580 Validation Accuracy: 0.676600
Epoch 73, CIFAR-10 Batch 5:  Loss:     0.0518 Validation Accuracy: 0.679800
Epoch 74, CIFAR-10 Batch 1:  Loss:     0.0582 Validation Accuracy: 0.679800
Epoch 74, CIFAR-10 Batch 2:  Loss:     0.0526 Validation Accuracy: 0.686200
Epoch 74, CIFAR-10 Batch 3:  Loss:     0.0582 Validation Accuracy: 0.685600
Epoch 74, CIFAR-10 Batch 4:  Loss:     0.0514 Validation Accuracy: 0.688200
Epoch 74, CIFAR-10 Batch 5:  Loss:     0.0478 Validation Accuracy: 0.680400
Epoch 75, CIFAR-10 Batch 1:  Loss:     0.0554 Validation Accuracy: 0.674400
Epoch 75, CIFAR-10 Batch 2:  Loss:     0.0597 Validation Accuracy: 0.667400
Epoch 75, CIFAR-10 Batch 3:  Loss:     0.0614 Validation Accuracy: 0.683600
Epoch 75, CIFAR-10 Batch 4:  Loss:     0.0483 Validation Accuracy: 0.680200
Epoch 75, CIFAR-10 Batch 5:  Loss:     0.0413 Validation Accuracy: 0.687800
Epoch 76, CIFAR-10 Batch 1:  Loss:     0.0457 Validation Accuracy: 0.682600
Epoch 76, CIFAR-10 Batch 2:  Loss:     0.0551 Validation Accuracy: 0.677600
Epoch 76, CIFAR-10 Batch 3:  Loss:     0.0504 Validation Accuracy: 0.670400
Epoch 76, CIFAR-10 Batch 4:  Loss:     0.0646 Validation Accuracy: 0.664200
Epoch 76, CIFAR-10 Batch 5:  Loss:     0.0573 Validation Accuracy: 0.657200
Epoch 77, CIFAR-10 Batch 1:  Loss:     0.0741 Validation Accuracy: 0.659600
Epoch 77, CIFAR-10 Batch 2:  Loss:     0.0679 Validation Accuracy: 0.659600
Epoch 77, CIFAR-10 Batch 3:  Loss:     0.0598 Validation Accuracy: 0.674800
Epoch 77, CIFAR-10 Batch 4:  Loss:     0.0507 Validation Accuracy: 0.681200
Epoch 77, CIFAR-10 Batch 5:  Loss:     0.0505 Validation Accuracy: 0.669000
Epoch 78, CIFAR-10 Batch 1:  Loss:     0.0456 Validation Accuracy: 0.686000
Epoch 78, CIFAR-10 Batch 2:  Loss:     0.0501 Validation Accuracy: 0.681200
Epoch 78, CIFAR-10 Batch 3:  Loss:     0.0449 Validation Accuracy: 0.673200
Epoch 78, CIFAR-10 Batch 4:  Loss:     0.0452 Validation Accuracy: 0.679400
Epoch 78, CIFAR-10 Batch 5:  Loss:     0.0379 Validation Accuracy: 0.684400
Epoch 79, CIFAR-10 Batch 1:  Loss:     0.0442 Validation Accuracy: 0.683600
Epoch 79, CIFAR-10 Batch 2:  Loss:     0.0462 Validation Accuracy: 0.683200
Epoch 79, CIFAR-10 Batch 3:  Loss:     0.0401 Validation Accuracy: 0.677000
Epoch 79, CIFAR-10 Batch 4:  Loss:     0.0396 Validation Accuracy: 0.692200
Epoch 79, CIFAR-10 Batch 5:  Loss:     0.0349 Validation Accuracy: 0.685000
Epoch 80, CIFAR-10 Batch 1:  Loss:     0.0397 Validation Accuracy: 0.686000
Epoch 80, CIFAR-10 Batch 2:  Loss:     0.0420 Validation Accuracy: 0.679800
Epoch 80, CIFAR-10 Batch 3:  Loss:     0.0366 Validation Accuracy: 0.673600
Epoch 80, CIFAR-10 Batch 4:  Loss:     0.0405 Validation Accuracy: 0.677000
Epoch 80, CIFAR-10 Batch 5:  Loss:     0.0300 Validation Accuracy: 0.676400
Epoch 81, CIFAR-10 Batch 1:  Loss:     0.0396 Validation Accuracy: 0.678600
Epoch 81, CIFAR-10 Batch 2:  Loss:     0.0369 Validation Accuracy: 0.686400
Epoch 81, CIFAR-10 Batch 3:  Loss:     0.0333 Validation Accuracy: 0.680400
Epoch 81, CIFAR-10 Batch 4:  Loss:     0.0318 Validation Accuracy: 0.685200
Epoch 81, CIFAR-10 Batch 5:  Loss:     0.0290 Validation Accuracy: 0.683200
Epoch 82, CIFAR-10 Batch 1:  Loss:     0.0401 Validation Accuracy: 0.679400
Epoch 82, CIFAR-10 Batch 2:  Loss:     0.0389 Validation Accuracy: 0.674400
Epoch 82, CIFAR-10 Batch 3:  Loss:     0.0352 Validation Accuracy: 0.682600
Epoch 82, CIFAR-10 Batch 4:  Loss:     0.0358 Validation Accuracy: 0.675800
Epoch 82, CIFAR-10 Batch 5:  Loss:     0.0299 Validation Accuracy: 0.682800
Epoch 83, CIFAR-10 Batch 1:  Loss:     0.0316 Validation Accuracy: 0.684400
Epoch 83, CIFAR-10 Batch 2:  Loss:     0.0338 Validation Accuracy: 0.684800
Epoch 83, CIFAR-10 Batch 3:  Loss:     0.0296 Validation Accuracy: 0.679400
Epoch 83, CIFAR-10 Batch 4:  Loss:     0.0282 Validation Accuracy: 0.684600
Epoch 83, CIFAR-10 Batch 5:  Loss:     0.0224 Validation Accuracy: 0.680800
Epoch 84, CIFAR-10 Batch 1:  Loss:     0.0305 Validation Accuracy: 0.685400
Epoch 84, CIFAR-10 Batch 2:  Loss:     0.0324 Validation Accuracy: 0.678000
Epoch 84, CIFAR-10 Batch 3:  Loss:     0.0317 Validation Accuracy: 0.673200
Epoch 84, CIFAR-10 Batch 4:  Loss:     0.0305 Validation Accuracy: 0.678000
Epoch 84, CIFAR-10 Batch 5:  Loss:     0.0243 Validation Accuracy: 0.680400
Epoch 85, CIFAR-10 Batch 1:  Loss:     0.0304 Validation Accuracy: 0.682400
Epoch 85, CIFAR-10 Batch 2:  Loss:     0.0382 Validation Accuracy: 0.675600
Epoch 85, CIFAR-10 Batch 3:  Loss:     0.0368 Validation Accuracy: 0.660200
Epoch 85, CIFAR-10 Batch 4:  Loss:     0.0315 Validation Accuracy: 0.680600
Epoch 85, CIFAR-10 Batch 5:  Loss:     0.0309 Validation Accuracy: 0.668400
Epoch 86, CIFAR-10 Batch 1:  Loss:     0.0401 Validation Accuracy: 0.679400
Epoch 86, CIFAR-10 Batch 2:  Loss:     0.0491 Validation Accuracy: 0.659200
Epoch 86, CIFAR-10 Batch 3:  Loss:     0.0563 Validation Accuracy: 0.661000
Epoch 86, CIFAR-10 Batch 4:  Loss:     0.0451 Validation Accuracy: 0.668000
Epoch 86, CIFAR-10 Batch 5:  Loss:     0.0334 Validation Accuracy: 0.671200
Epoch 87, CIFAR-10 Batch 1:  Loss:     0.0332 Validation Accuracy: 0.671600
Epoch 87, CIFAR-10 Batch 2:  Loss:     0.0407 Validation Accuracy: 0.674800
Epoch 87, CIFAR-10 Batch 3:  Loss:     0.0412 Validation Accuracy: 0.656800
Epoch 87, CIFAR-10 Batch 4:  Loss:     0.0377 Validation Accuracy: 0.671400
Epoch 87, CIFAR-10 Batch 5:  Loss:     0.0414 Validation Accuracy: 0.661200
Epoch 88, CIFAR-10 Batch 1:  Loss:     0.0507 Validation Accuracy: 0.663400
Epoch 88, CIFAR-10 Batch 2:  Loss:     0.0502 Validation Accuracy: 0.662400
Epoch 88, CIFAR-10 Batch 3:  Loss:     0.0382 Validation Accuracy: 0.673400
Epoch 88, CIFAR-10 Batch 4:  Loss:     0.0311 Validation Accuracy: 0.685200
Epoch 88, CIFAR-10 Batch 5:  Loss:     0.0311 Validation Accuracy: 0.678200
Epoch 89, CIFAR-10 Batch 1:  Loss:     0.0354 Validation Accuracy: 0.672000
Epoch 89, CIFAR-10 Batch 2:  Loss:     0.0344 Validation Accuracy: 0.684000
Epoch 89, CIFAR-10 Batch 3:  Loss:     0.0360 Validation Accuracy: 0.664800
Epoch 89, CIFAR-10 Batch 4:  Loss:     0.0392 Validation Accuracy: 0.666800
Epoch 89, CIFAR-10 Batch 5:  Loss:     0.0394 Validation Accuracy: 0.662600
Epoch 90, CIFAR-10 Batch 1:  Loss:     0.0262 Validation Accuracy: 0.681000
Epoch 90, CIFAR-10 Batch 2:  Loss:     0.0327 Validation Accuracy: 0.674400
Epoch 90, CIFAR-10 Batch 3:  Loss:     0.0392 Validation Accuracy: 0.668400
Epoch 90, CIFAR-10 Batch 4:  Loss:     0.0346 Validation Accuracy: 0.672600
Epoch 90, CIFAR-10 Batch 5:  Loss:     0.0343 Validation Accuracy: 0.672600
Epoch 91, CIFAR-10 Batch 1:  Loss:     0.0376 Validation Accuracy: 0.660000
Epoch 91, CIFAR-10 Batch 2:  Loss:     0.0476 Validation Accuracy: 0.669200
Epoch 91, CIFAR-10 Batch 3:  Loss:     0.0380 Validation Accuracy: 0.664000
Epoch 91, CIFAR-10 Batch 4:  Loss:     0.0330 Validation Accuracy: 0.675600
Epoch 91, CIFAR-10 Batch 5:  Loss:     0.0309 Validation Accuracy: 0.673400
Epoch 92, CIFAR-10 Batch 1:  Loss:     0.0314 Validation Accuracy: 0.677400
Epoch 92, CIFAR-10 Batch 2:  Loss:     0.0436 Validation Accuracy: 0.660600
Epoch 92, CIFAR-10 Batch 3:  Loss:     0.0284 Validation Accuracy: 0.685400
Epoch 92, CIFAR-10 Batch 4:  Loss:     0.0281 Validation Accuracy: 0.674800
Epoch 92, CIFAR-10 Batch 5:  Loss:     0.0264 Validation Accuracy: 0.678800
Epoch 93, CIFAR-10 Batch 1:  Loss:     0.0256 Validation Accuracy: 0.675200
Epoch 93, CIFAR-10 Batch 2:  Loss:     0.0290 Validation Accuracy: 0.679400
Epoch 93, CIFAR-10 Batch 3:  Loss:     0.0249 Validation Accuracy: 0.681600
Epoch 93, CIFAR-10 Batch 4:  Loss:     0.0210 Validation Accuracy: 0.678800
Epoch 93, CIFAR-10 Batch 5:  Loss:     0.0214 Validation Accuracy: 0.682600
Epoch 94, CIFAR-10 Batch 1:  Loss:     0.0234 Validation Accuracy: 0.677000
Epoch 94, CIFAR-10 Batch 2:  Loss:     0.0205 Validation Accuracy: 0.678200
Epoch 94, CIFAR-10 Batch 3:  Loss:     0.0196 Validation Accuracy: 0.687200
Epoch 94, CIFAR-10 Batch 4:  Loss:     0.0195 Validation Accuracy: 0.682200
Epoch 94, CIFAR-10 Batch 5:  Loss:     0.0239 Validation Accuracy: 0.676000
Epoch 95, CIFAR-10 Batch 1:  Loss:     0.0175 Validation Accuracy: 0.679600
Epoch 95, CIFAR-10 Batch 2:  Loss:     0.0191 Validation Accuracy: 0.687800
Epoch 95, CIFAR-10 Batch 3:  Loss:     0.0229 Validation Accuracy: 0.682600
Epoch 95, CIFAR-10 Batch 4:  Loss:     0.0159 Validation Accuracy: 0.675400
Epoch 95, CIFAR-10 Batch 5:  Loss:     0.0191 Validation Accuracy: 0.682600
Epoch 96, CIFAR-10 Batch 1:  Loss:     0.0165 Validation Accuracy: 0.693000
Epoch 96, CIFAR-10 Batch 2:  Loss:     0.0145 Validation Accuracy: 0.685200
Epoch 96, CIFAR-10 Batch 3:  Loss:     0.0207 Validation Accuracy: 0.675800
Epoch 96, CIFAR-10 Batch 4:  Loss:     0.0151 Validation Accuracy: 0.677800
Epoch 96, CIFAR-10 Batch 5:  Loss:     0.0163 Validation Accuracy: 0.685400
Epoch 97, CIFAR-10 Batch 1:  Loss:     0.0177 Validation Accuracy: 0.686400
Epoch 97, CIFAR-10 Batch 2:  Loss:     0.0206 Validation Accuracy: 0.676600
Epoch 97, CIFAR-10 Batch 3:  Loss:     0.0262 Validation Accuracy: 0.665200
Epoch 97, CIFAR-10 Batch 4:  Loss:     0.0298 Validation Accuracy: 0.671600
Epoch 97, CIFAR-10 Batch 5:  Loss:     0.0298 Validation Accuracy: 0.664800
Epoch 98, CIFAR-10 Batch 1:  Loss:     0.0423 Validation Accuracy: 0.671000
Epoch 98, CIFAR-10 Batch 2:  Loss:     0.0327 Validation Accuracy: 0.657000
Epoch 98, CIFAR-10 Batch 3:  Loss:     0.0249 Validation Accuracy: 0.678600
Epoch 98, CIFAR-10 Batch 4:  Loss:     0.0169 Validation Accuracy: 0.692600
Epoch 98, CIFAR-10 Batch 5:  Loss:     0.0160 Validation Accuracy: 0.679200
Epoch 99, CIFAR-10 Batch 1:  Loss:     0.0152 Validation Accuracy: 0.683800
Epoch 99, CIFAR-10 Batch 2:  Loss:     0.0155 Validation Accuracy: 0.688200
Epoch 99, CIFAR-10 Batch 3:  Loss:     0.0146 Validation Accuracy: 0.695000
Epoch 99, CIFAR-10 Batch 4:  Loss:     0.0129 Validation Accuracy: 0.692400
Epoch 99, CIFAR-10 Batch 5:  Loss:     0.0112 Validation Accuracy: 0.692200
Epoch 100, CIFAR-10 Batch 1:  Loss:     0.0130 Validation Accuracy: 0.688600
Epoch 100, CIFAR-10 Batch 2:  Loss:     0.0125 Validation Accuracy: 0.689600
Epoch 100, CIFAR-10 Batch 3:  Loss:     0.0145 Validation Accuracy: 0.688400
Epoch 100, CIFAR-10 Batch 4:  Loss:     0.0101 Validation Accuracy: 0.689200
Epoch 100, CIFAR-10 Batch 5:  Loss:     0.0091 Validation Accuracy: 0.692000

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [12]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.6830435395240784

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.