In [1]:
)version


 
Value = "FriCAS 1.2.3 compiled at Wed, May 07, 2014  3:39:04 PM"

In [2]:
x^n


 
         n
   (3)  x
                                                    Type: Expression(Integer)

In [3]:
)set output tex on


 

In [4]:
x^n


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {x} \sp {n} \leqno(4) $$

In [8]:
integrate(1/(x * (a+b*x)^(1/3)),x)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {-{\log \left( {{{{\root {3} \of {a}} \ {{{\root {3} \of {{{b \ x}+a}}}} \sp {2}}}+{{{{\root {3} \of {a}}} \sp {2}} \ {\root {3} \of {{{b \ x}+a}}}}+a}} \right)}+{2 \ {\log \left( {{{{{{\root {3} \of {a}}} \sp {2}} \ {\root {3} \of {{{b \ x}+a}}}} -a}} \right)}}+{2 \ {\sqrt {3}} \ {\arctan \left( {{{{2 \ {\sqrt {3}} \ {{{\root {3} \of {a}}} \sp {2}} \ {\root {3} \of {{{b \ x}+a}}}}+{a \ {\sqrt {3}}}} \over {3 \ a}}} \right)}}} \over {2 \ {\root {3} \of {a}}} \leqno(7) $$

In [9]:
series(log(cot(x)),x = %pi/2)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {\log \left( {{{-{2 \ x}+\pi} \over 2}} \right)}+{{1 \over 3} \ {{{\left( x -{\pi \over 2} \right)}} \sp {2}}}+{{7 \over {90}} \ {{{\left( x -{\pi \over 2} \right)}} \sp {4}}}+{{{62} \over {2835}} \ {{{\left( x -{\pi \over 2} \right)}} \sp {6}}}+{{{127} \over {18900}} \ {{{\left( x -{\pi \over 2} \right)}} \sp {8}}}+{{{146} \over {66825}} \ {{{\left( x -{\pi \over 2} \right)}} \sp {{10}}}}+{O \left( {{{{\left( x -{\pi \over 2} \right)}} \sp {{11}}}} \right)} \leqno(8) $$

In [10]:
M:=matrix [ [x + %i,0], [1,-2] ]


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ \begin{array}{cc} {x+i} & 0 \\ 1 & -2 \end{array} \right] \leqno(9) $$

In [11]:
inverse(M)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ \begin{array}{cc} {1 \over {x+i}} & 0 \\ {1 \over {{2 \ x}+{2 \ i}}} & -{1 \over 2} \end{array} \right] \leqno(10) $$

In [13]:
S := [3*x^3 + y + 1 = 0,y^2 = 4]


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ {{y+{3 \ {{x} \sp {3}}}+1}=0}, \: {{{y} \sp {2}}=4} \right] \leqno(11) $$

In [14]:
radicalSolve(S)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ {\left[ {y=2}, \: {x=-1} \right]}, \: {\left[ {y=2}, \: {x={{-{\sqrt {-3}}+1} \over 2}} \right]}, \: {\left[ {y=2}, \: {x={{{\sqrt {-3}}+1} \over 2}} \right]}, \: {\left[ {y=-2}, \: {x={1 \over {\root {3} \of {3}}}} \right]}, \: {\left[ {y=-2}, \: {x={{{{\sqrt {-1}} \ {\sqrt {3}}} -1} \over {2 \ {\root {3} \of {3}}}}} \right]}, \: {\left[ {y=-2}, \: {x={{-{{\sqrt {-1}} \ {\sqrt {3}}} -1} \over {2 \ {\root {3} \of {3}}}}} \right]} \right] \leqno(12) $$

In [15]:
continuedFraction(6543/210)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {31}+ \zag{1}{6}+ \zag{1}{2}+ \zag{1}{1}+ \zag{1}{3} \leqno(13) $$

In [17]:
(3*a^4 + 27*a - 36)::Polynomial PrimeField 7


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {3 \ {{a} \sp {4}}}+{6 \ a}+6 \leqno(14) $$

In [19]:
[i^2 for i in 1..10]


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ 1, \: 4, \: 9, \: {16}, \: {25}, \: {36}, \: {49}, \: {64}, \: {81}, \: {100} \right] \leqno(15) $$

In [20]:
[i for i in 1..10 | even?(i)]


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ 2, \: 4, \: 6, \: 8, \: {10} \right] \leqno(16) $$

In [21]:
[1..3,5,6,8..10]


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ {1..3}, \: {5..5}, \: {6..6}, \: {8..{10}} \right] \leqno(17) $$

In [22]:
factor 643238070748569023720594412551704344145570763243


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {{{11}} \sp {{13}}} \ {{{13}} \sp {{11}}} \ {{{17}} \sp {7}} \ {{{19}} \sp {5}} \ {{{23}} \sp {3}} \ {{{29}} \sp {2}} \leqno(18) $$

In [23]:
roman(1992)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ MCMXCII \leqno(19) $$

In [24]:
(2/3 + %i)^3


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ -{{46} \over {27}}+{{1 \over 3} \ i} \leqno(20) $$

In [25]:
q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ -{8 \ i}+{{16} \ j} -{8 \ k} \leqno(21) $$

In [26]:
matrix([ [1/(i + j - x) for i in 1..4] for j in 1..4])


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ \begin{array}{cccc} -{1 \over {x -2}} & -{1 \over {x -3}} & -{1 \over {x -4}} & -{1 \over {x -5}} \\ -{1 \over {x -3}} & -{1 \over {x -4}} & -{1 \over {x -5}} & -{1 \over {x -6}} \\ -{1 \over {x -4}} & -{1 \over {x -5}} & -{1 \over {x -6}} & -{1 \over {x -7}} \\ -{1 \over {x -5}} & -{1 \over {x -6}} & -{1 \over {x -7}} & -{1 \over {x -8}} \end{array} \right] \leqno(22) $$

In [28]:
p: UP(x,INT) := (3*x-1)^2 * (2*x + 8)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {{18} \ {{x} \sp {3}}}+{{60} \ {{x} \sp {2}}} -{{46} \ x}+8 \leqno(23) $$

In [29]:
g := csc(a*x) / csch(b*x)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {\csc \left( {{a \ x}} \right)} \over {\csch \left( {{b \ x}} \right)} \leqno(24) $$

In [30]:
limit(g,x=0)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ b \over a \leqno(25) $$

In [32]:
h := (1 + k/x)^x


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {{{x+k} \over x}} \sp {x} \leqno(26) $$

In [33]:
limit(h,x=%plusInfinity)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {e} \sp {k} \leqno(27) $$

In [34]:
series(sin(a*x),x = 0)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {a \ x} -{{{{a} \sp {3}} \over 6} \ {{x} \sp {3}}}+{{{{a} \sp {5}} \over {120}} \ {{x} \sp {5}}} -{{{{a} \sp {7}} \over {5040}} \ {{x} \sp {7}}}+{{{{a} \sp {9}} \over {362880}} \ {{x} \sp {9}}} -{{{{a} \sp {{11}}} \over {39916800}} \ {{x} \sp {{11}}}}+{O \left( {{{x} \sp {{12}}}} \right)} \leqno(28) $$

In [35]:
series(sin(a*x),x = %pi/4)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {\sin \left( {{{a \ \pi} \over 4}} \right)}+{a \ {\cos \left( {{{a \ \pi} \over 4}} \right)} \ {\left( x -{\pi \over 4} \right)}} -{{{{{a} \sp {2}} \ {\sin \left( {{{a \ \pi} \over 4}} \right)}} \over 2} \ {{{\left( x -{\pi \over 4} \right)}} \sp {2}}} -{{{{{a} \sp {3}} \ {\cos \left( {{{a \ \pi} \over 4}} \right)}} \over 6} \ {{{\left( x -{\pi \over 4} \right)}} \sp {3}}}+{{{{{a} \sp {4}} \ {\sin \left( {{{a \ \pi} \over 4}} \right)}} \over {24}} \ {{{\left( x -{\pi \over 4} \right)}} \sp {4}}}+{{{{{a} \sp {5}} \ {\cos \left( {{{a \ \pi} \over 4}} \right)}} \over {120}} \ {{{\left( x -{\pi \over 4} \right)}} \sp {5}}} -{{{{{a} \sp {6}} \ {\sin \left( {{{a \ \pi} \over 4}} \right)}} \over {720}} \ {{{\left( x -{\pi \over 4} \right)}} \sp {6}}} -{{{{{a} \sp {7}} \ {\cos \left( {{{a \ \pi} \over 4}} \right)}} \over {5040}} \ {{{\left( x -{\pi \over 4} \right)}} \sp {7}}}+{{{{{a} \sp {8}} \ {\sin \left( {{{a \ \pi} \over 4}} \right)}} \over {40320}} \ {{{\left( x -{\pi \over 4} \right)}} \sp {8}}}+{{{{{a} \sp {9}} \ {\cos \left( {{{a \ \pi} \over 4}} \right)}} \over {362880}} \ {{{\left( x -{\pi \over 4} \right)}} \sp {9}}} -{{{{{a} \sp {{10}}} \ {\sin \left( {{{a \ \pi} \over 4}} \right)}} \over {3628800}} \ {{{\left( x -{\pi \over 4} \right)}} \sp {{10}}}}+{O \left( {{{{\left( x -{\pi \over 4} \right)}} \sp {{11}}}} \right)} \leqno(29) $$

In [36]:
series(n +-> (-1)^((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {{x} \sp {{4 \over 3}}} -{{1 \over 6} \ {{x} \sp {{{10} \over 3}}}}+{O \left( {{{x} \sp {5}}} \right)} \leqno(30) $$

In [37]:
f := taylor(exp(x))


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ 1+x+{{1 \over 2} \ {{x} \sp {2}}}+{{1 \over 6} \ {{x} \sp {3}}}+{{1 \over {24}} \ {{x} \sp {4}}}+{{1 \over {120}} \ {{x} \sp {5}}}+{{1 \over {720}} \ {{x} \sp {6}}}+{{1 \over {5040}} \ {{x} \sp {7}}}+{{1 \over {40320}} \ {{x} \sp {8}}}+{{1 \over {362880}} \ {{x} \sp {9}}}+{{1 \over {3628800}} \ {{x} \sp {{10}}}}+{O \left( {{{x} \sp {{11}}}} \right)} \leqno(31) $$

In [38]:
F := operator 'F; x := operator 'x; y := operator 'y


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ y \leqno(32) $$

In [40]:
a := F(x z, y z, z^2) + x y(z+1)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {x \left( {{y \left( {{z+1}} \right)}} \right)}+{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)} \leqno(33) $$

In [41]:
dadz := D(a, z)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {2 \ z \ {{F \sb {{,3}}} \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}+{{{y \sb {{\ }} \sp {,}} \left( {z} \right)} \ {{F \sb {{,2}}} \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}+{{{x \sb {{\ }} \sp {,}} \left( {z} \right)} \ {{F \sb {{,1}}} \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}+{{{x \sb {{\ }} \sp {,}} \left( {{y \left( {{z+1}} \right)}} \right)} \ {{y \sb {{\ }} \sp {,}} \left( {{z+1}} \right)}} \leqno(34) $$

In [42]:
eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1))


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {{{\left( {2 \ {{z} \sp {2}}}+{2 \ z} \right)} \ {{F \sb {{,3}}} \left( {{{e} \sp {z}}, \: {\log \left( {{z+1}} \right)}, \: {{z} \sp {2}}} \right)}}+{{F \sb {{,2}}} \left( {{{e} \sp {z}}, \: {\log \left( {{z+1}} \right)}, \: {{z} \sp {2}}} \right)}+{{\left( z+1 \right)} \ {{e} \sp {z}} \ {{F \sb {{,1}}} \left( {{{e} \sp {z}}, \: {\log \left( {{z+1}} \right)}, \: {{z} \sp {2}}} \right)}}+z+1} \over {z+1} \leqno(35) $$

In [43]:
eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1))


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {F \left( {{{e} \sp {z}}, \: {\log \left( {{z+1}} \right)}, \: {{z} \sp {2}}} \right)}+z+2 \leqno(36) $$

In [44]:
D(%, z)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ {{{\left( {2 \ {{z} \sp {2}}}+{2 \ z} \right)} \ {{F \sb {{,3}}} \left( {{{e} \sp {z}}, \: {\log \left( {{z+1}} \right)}, \: {{z} \sp {2}}} \right)}}+{{F \sb {{,2}}} \left( {{{e} \sp {z}}, \: {\log \left( {{z+1}} \right)}, \: {{z} \sp {2}}} \right)}+{{\left( z+1 \right)} \ {{e} \sp {z}} \ {{F \sb {{,1}}} \left( {{{e} \sp {z}}, \: {\log \left( {{z+1}} \right)}, \: {{z} \sp {2}}} \right)}}+z+1} \over {z+1} \leqno(37) $$

In [50]:
integrate(1/(u^2 + a),u)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \left[ {{\log \left( {{{{{\left( -{x \left( {{y \left( {{z+1}} \right)}} \right)} -{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}+{{u} \sp {2}} \right)} \ {\sqrt {{-{x \left( {{y \left( {{z+1}} \right)}} \right)} -{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}}}}+{2 \ u \ {x \left( {{y \left( {{z+1}} \right)}} \right)}}+{2 \ u \ {F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}} \over {{x \left( {{y \left( {{z+1}} \right)}} \right)}+{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}+{{u} \sp {2}}}}} \right)} \over {2 \ {\sqrt {{-{x \left( {{y \left( {{z+1}} \right)}} \right)} -{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}}}}}, \: {{\arctan \left( {{{u \ {\sqrt {{{x \left( {{y \left( {{z+1}} \right)}} \right)}+{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}}}} \over {{x \left( {{y \left( {{z+1}} \right)}} \right)}+{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}}} \right)} \over {\sqrt {{{x \left( {{y \left( {{z+1}} \right)}} \right)}+{F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}}}} \right] \leqno(38) $$

In [52]:
integrate(log(1 + sqrt(a*u + b)) / u,u)


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ \int \sp{\displaystyle u} {{{\log \left( {{{\sqrt {{{ \%A \ {x \left( {{y \left( {{z+1}} \right)}} \right)}}+{ \%A \ {F \left( {{x \left( {z} \right)}, \: {y \left( {z} \right)}, \: {{z} \sp {2}}} \right)}}+b}}}+1}} \right)} \over \%A} \ {d \%A}} \leqno(39) $$

In [53]:
y := operator 'y


$\def\sp{^}\def\sb{_}\def\leqno(#1){}$$$ y \leqno(40) $$

In [ ]:
)quit


-- Bye. Kernel shutdown [lib.site-packages.ipython-3**.egg]

In [ ]: