In [1]:
)version
In [2]:
x^n
In [3]:
)set output tex on
In [4]:
x^n
In [8]:
integrate(1/(x * (a+b*x)^(1/3)),x)
In [9]:
series(log(cot(x)),x = %pi/2)
In [10]:
M:=matrix [ [x + %i,0], [1,-2] ]
In [11]:
inverse(M)
In [13]:
S := [3*x^3 + y + 1 = 0,y^2 = 4]
In [14]:
radicalSolve(S)
In [15]:
continuedFraction(6543/210)
In [17]:
(3*a^4 + 27*a - 36)::Polynomial PrimeField 7
In [19]:
[i^2 for i in 1..10]
In [20]:
[i for i in 1..10 | even?(i)]
In [21]:
[1..3,5,6,8..10]
In [22]:
factor 643238070748569023720594412551704344145570763243
In [23]:
roman(1992)
In [24]:
(2/3 + %i)^3
In [25]:
q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)
In [26]:
matrix([ [1/(i + j - x) for i in 1..4] for j in 1..4])
In [28]:
p: UP(x,INT) := (3*x-1)^2 * (2*x + 8)
In [29]:
g := csc(a*x) / csch(b*x)
In [30]:
limit(g,x=0)
In [32]:
h := (1 + k/x)^x
In [33]:
limit(h,x=%plusInfinity)
In [34]:
series(sin(a*x),x = 0)
In [35]:
series(sin(a*x),x = %pi/4)
In [36]:
series(n +-> (-1)^((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)
In [37]:
f := taylor(exp(x))
In [38]:
F := operator 'F; x := operator 'x; y := operator 'y
In [40]:
a := F(x z, y z, z^2) + x y(z+1)
In [41]:
dadz := D(a, z)
In [42]:
eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1))
In [43]:
eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1))
In [44]:
D(%, z)
In [50]:
integrate(1/(u^2 + a),u)
In [52]:
integrate(log(1 + sqrt(a*u + b)) / u,u)
In [53]:
y := operator 'y
In [ ]:
)quit
In [ ]: