In [18]:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
In [33]:
def xavier_init(n_inputs, n_outputs, uniform=True):
"""Set the parameter initialization using the method described.
This method is designed to keep the scale of the gradients roughly the same
in all layers.
Xavier Glorot and Yoshua Bengio (2010):
Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and
statistics.
Args:
n_inputs: The number of input nodes into each output.
n_outputs: The number of output nodes for each input.
uniform: If true use a uniform distribution, otherwise use a normal.
Returns:
An initializer.
"""
if uniform:
# 6 was used in the paper.
init_range = tf.sqrt(6.0 / (n_inputs + n_outputs))
return tf.random_uniform_initializer(-init_range, init_range)
else:
# 3 gives us approximately the same limits as above since this repicks
# values greater than 2 standard deviations from the mean.
stddev = tf.sqrt(3.0 / (n_inputs + n_outputs))
return tf.truncated_normal_initializer(stddev=stddev)
In [34]:
'''A recent paper by He, Rang, Zhen and Sun they build on Glorot & Bengio and suggest using 2/size_of_input_neuron
'''
def xavier_init(size):
in_dim = size[0]
# xavier_stddev = 1. / in_dim
# xavier_stddev = 2. / in_dim
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
In [22]:
X = tf.placeholder(tf.float32, shape=[None, 784])
D_W1 = tf.Variable(xavier_init([784, 128]))
D_b1 = tf.Variable(tf.zeros(shape=[128]))
D_W2 = tf.Variable(xavier_init([128, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))
theta_D = [D_W1, D_W2, D_b1, D_b2]
In [ ]:
def discriminator(x):
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
D_logit = tf.matmul(D_h1, D_W2) + D_b2
D_prob = tf.nn.sigmoid(D_logit)
return D_prob, D_logit
In [23]:
Z = tf.placeholder(tf.float32, shape=[None, 100])
G_W1 = tf.Variable(xavier_init([100, 128]))
G_b1 = tf.Variable(tf.zeros(shape=[128]))
G_W2 = tf.Variable(xavier_init([128, 784]))
G_b2 = tf.Variable(tf.zeros(shape=[784]))
theta_G = [G_W1, G_W2, G_b1, G_b2]
In [24]:
def sample_Z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
In [25]:
def generator(z):
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_prob = tf.nn.sigmoid(G_log_prob)
return G_prob
In [27]:
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
In [28]:
G_sample = generator(Z)
D_real, D_logit_real = discriminator(X)
D_fake, D_logit_fake = discriminator(G_sample)
In [29]:
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real)))
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake)))
D_loss = D_loss_real + D_loss_fake
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)))
In [30]:
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)
In [31]:
minibatch_size = 128
Z_dim = 100
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'):
os.makedirs('out/')
i = 0
for it in range(1000000):
if it % 1000 == 0:
samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig)
X_mb, _ = mnist.train.next_batch(minibatch_size)
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(minibatch_size, Z_dim)})
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(minibatch_size, Z_dim)})
if it % 1000 == 0:
print('Iter: {}'.format(it))
print('D loss: {:.4}'. format(D_loss_curr))
print('G_loss: {:.4}'.format(G_loss_curr))
print()
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting ../../MNIST_data\train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting ../../MNIST_data\train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting ../../MNIST_data\t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting ../../MNIST_data\t10k-labels-idx1-ubyte.gz
Iter: 0
D loss: 1.793
G_loss: 1.83
Iter: 1000
D loss: 0.005425
G_loss: 9.048
Iter: 2000
D loss: 0.02739
G_loss: 6.6
Iter: 3000
D loss: 0.03566
G_loss: 5.768
Iter: 4000
D loss: 0.1334
G_loss: 5.255
Iter: 5000
D loss: 0.187
G_loss: 4.526
Iter: 6000
D loss: 0.3584
G_loss: 3.865
Iter: 7000
D loss: 0.3289
G_loss: 4.048
Iter: 8000
D loss: 0.4025
G_loss: 2.979
Iter: 9000
D loss: 0.5652
G_loss: 3.069
Iter: 10000
D loss: 0.5653
G_loss: 3.092
Iter: 11000
D loss: 0.6922
G_loss: 2.194
Iter: 12000
D loss: 0.7456
G_loss: 2.625
Iter: 13000
D loss: 0.548
G_loss: 2.864
Iter: 14000
D loss: 0.5857
G_loss: 2.317
Iter: 15000
D loss: 0.5944
G_loss: 2.065
Iter: 16000
D loss: 0.6969
G_loss: 2.408
Iter: 17000
D loss: 0.5929
G_loss: 2.317
Iter: 18000
D loss: 0.7433
G_loss: 2.224
Iter: 19000
D loss: 0.6149
G_loss: 2.181
Iter: 20000
D loss: 0.6853
G_loss: 1.896
Iter: 21000
D loss: 0.6543
G_loss: 2.018
Iter: 22000
D loss: 0.7029
G_loss: 2.086
Iter: 23000
D loss: 0.7259
G_loss: 2.199
Iter: 24000
D loss: 0.7592
G_loss: 2.145
Iter: 25000
D loss: 0.6902
G_loss: 2.426
Iter: 26000
D loss: 0.5449
G_loss: 2.299
Iter: 27000
D loss: 0.5574
G_loss: 1.886
Iter: 28000
D loss: 0.6411
G_loss: 2.194
Iter: 29000
D loss: 0.7282
G_loss: 2.292
Iter: 30000
D loss: 0.6845
G_loss: 2.092
Iter: 31000
D loss: 0.6813
G_loss: 1.766
Iter: 32000
D loss: 0.7369
G_loss: 2.322
Iter: 33000
D loss: 0.7042
G_loss: 2.478
Iter: 34000
D loss: 0.6658
G_loss: 1.995
Iter: 35000
D loss: 0.7435
G_loss: 2.404
Iter: 36000
D loss: 0.6986
G_loss: 2.427
Iter: 37000
D loss: 0.6231
G_loss: 2.3
Iter: 38000
D loss: 0.5674
G_loss: 2.272
Iter: 39000
D loss: 0.7193
G_loss: 2.466
Iter: 40000
D loss: 0.7521
G_loss: 2.141
Iter: 41000
D loss: 0.6051
G_loss: 2.856
Iter: 42000
D loss: 0.6131
G_loss: 2.263
Iter: 43000
D loss: 0.6125
G_loss: 2.505
Iter: 44000
D loss: 0.6065
G_loss: 2.543
Iter: 45000
D loss: 0.5075
G_loss: 2.408
Iter: 46000
D loss: 0.6732
G_loss: 2.022
Iter: 47000
D loss: 0.7537
G_loss: 2.522
Iter: 48000
D loss: 0.5968
G_loss: 2.576
Iter: 49000
D loss: 0.5731
G_loss: 2.248
Iter: 50000
D loss: 0.5892
G_loss: 2.36
Iter: 51000
D loss: 0.6566
G_loss: 2.054
Iter: 52000
D loss: 0.589
G_loss: 2.229
Iter: 53000
D loss: 0.5453
G_loss: 2.539
Iter: 54000
D loss: 0.6377
G_loss: 2.325
Iter: 55000
D loss: 0.6443
G_loss: 2.201
Iter: 56000
D loss: 0.5691
G_loss: 2.22
Iter: 57000
D loss: 0.602
G_loss: 2.236
Iter: 58000
D loss: 0.6328
G_loss: 2.221
Iter: 59000
D loss: 0.56
G_loss: 2.09
Iter: 60000
D loss: 0.6583
G_loss: 2.434
Iter: 61000
D loss: 0.5936
G_loss: 2.688
Iter: 62000
D loss: 0.6583
G_loss: 2.722
Iter: 63000
D loss: 0.6678
G_loss: 2.077
Iter: 64000
D loss: 0.61
G_loss: 2.343
Iter: 65000
D loss: 0.7147
G_loss: 2.032
Iter: 66000
D loss: 0.556
G_loss: 2.439
Iter: 67000
D loss: 0.502
G_loss: 2.473
Iter: 68000
D loss: 0.6628
G_loss: 2.285
Iter: 69000
D loss: 0.6636
G_loss: 2.367
Iter: 70000
D loss: 0.6008
G_loss: 2.528
Iter: 71000
D loss: 0.5741
G_loss: 2.275
Iter: 72000
D loss: 0.6757
G_loss: 2.364
Iter: 73000
D loss: 0.5951
G_loss: 2.277
Iter: 74000
D loss: 0.6446
G_loss: 2.212
Iter: 75000
D loss: 0.5831
G_loss: 2.549
Iter: 76000
D loss: 0.5225
G_loss: 2.821
Iter: 77000
D loss: 0.5037
G_loss: 2.398
Iter: 78000
D loss: 0.5588
G_loss: 2.748
Iter: 79000
D loss: 0.5139
G_loss: 2.05
Iter: 80000
D loss: 0.6058
G_loss: 2.121
Iter: 81000
D loss: 0.5188
G_loss: 2.151
Iter: 82000
D loss: 0.7628
G_loss: 2.365
Iter: 83000
D loss: 0.5969
G_loss: 2.225
Iter: 84000
D loss: 0.487
G_loss: 2.248
Iter: 85000
D loss: 0.5701
G_loss: 2.347
Iter: 86000
D loss: 0.5312
G_loss: 2.145
Iter: 87000
D loss: 0.6747
G_loss: 2.319
Iter: 88000
D loss: 0.6919
G_loss: 2.565
Iter: 89000
D loss: 0.4909
G_loss: 2.332
Iter: 90000
D loss: 0.6213
G_loss: 2.755
Iter: 91000
D loss: 0.4686
G_loss: 2.596
Iter: 92000
D loss: 0.5075
G_loss: 2.496
Iter: 93000
D loss: 0.6059
G_loss: 2.547
Iter: 94000
D loss: 0.5324
G_loss: 2.446
Iter: 95000
D loss: 0.5849
G_loss: 2.423
Iter: 96000
D loss: 0.5195
G_loss: 2.336
Iter: 97000
D loss: 0.6016
G_loss: 2.444
Iter: 98000
D loss: 0.6684
G_loss: 2.517
Iter: 99000
D loss: 0.5965
G_loss: 2.357
Iter: 100000
D loss: 0.6298
G_loss: 2.45
Iter: 101000
D loss: 0.4503
G_loss: 3.148
Iter: 102000
D loss: 0.5333
G_loss: 2.653
Iter: 103000
D loss: 0.5518
G_loss: 2.494
Iter: 104000
D loss: 0.4912
G_loss: 2.504
Iter: 105000
D loss: 0.579
G_loss: 2.756
Iter: 106000
D loss: 0.4961
G_loss: 2.716
Iter: 107000
D loss: 0.4284
G_loss: 2.555
Iter: 108000
D loss: 0.446
G_loss: 2.709
Iter: 109000
D loss: 0.5174
G_loss: 2.49
Iter: 110000
D loss: 0.5993
G_loss: 2.591
Iter: 111000
D loss: 0.5951
G_loss: 2.631
Iter: 112000
D loss: 0.6414
G_loss: 2.527
Iter: 113000
D loss: 0.4856
G_loss: 2.783
Iter: 114000
D loss: 0.6077
G_loss: 2.436
Iter: 115000
D loss: 0.577
G_loss: 2.643
Iter: 116000
D loss: 0.6172
G_loss: 2.64
Iter: 117000
D loss: 0.5762
G_loss: 2.6
Iter: 118000
D loss: 0.5079
G_loss: 2.45
Iter: 119000
D loss: 0.4511
G_loss: 2.324
Iter: 120000
D loss: 0.3917
G_loss: 2.298
Iter: 121000
D loss: 0.4767
G_loss: 2.362
Iter: 122000
D loss: 0.4181
G_loss: 2.801
Iter: 123000
D loss: 0.4134
G_loss: 2.85
Iter: 124000
D loss: 0.5061
G_loss: 2.628
Iter: 125000
D loss: 0.5514
G_loss: 2.833
Iter: 126000
D loss: 0.5902
G_loss: 2.766
Iter: 127000
D loss: 0.4254
G_loss: 2.622
Iter: 128000
D loss: 0.4781
G_loss: 2.653
Iter: 129000
D loss: 0.5029
G_loss: 2.668
Iter: 130000
D loss: 0.5111
G_loss: 2.386
Iter: 131000
D loss: 0.5245
G_loss: 2.286
Iter: 132000
D loss: 0.4558
G_loss: 2.686
Iter: 133000
D loss: 0.4073
G_loss: 2.605
Iter: 134000
D loss: 0.4317
G_loss: 2.934
Iter: 135000
D loss: 0.508
G_loss: 2.815
Iter: 136000
D loss: 0.5047
G_loss: 3.007
Iter: 137000
D loss: 0.4874
G_loss: 2.655
Iter: 138000
D loss: 0.4133
G_loss: 2.899
Iter: 139000
D loss: 0.5487
G_loss: 2.46
Iter: 140000
D loss: 0.4515
G_loss: 2.761
Iter: 141000
D loss: 0.4463
G_loss: 2.691
Iter: 142000
D loss: 0.5048
G_loss: 2.679
Iter: 143000
D loss: 0.5459
G_loss: 3.019
Iter: 144000
D loss: 0.5126
G_loss: 2.533
Iter: 145000
D loss: 0.5
G_loss: 2.769
Iter: 146000
D loss: 0.4804
G_loss: 2.554
Iter: 147000
D loss: 0.4787
G_loss: 2.755
Iter: 148000
D loss: 0.4578
G_loss: 2.341
Iter: 149000
D loss: 0.4884
G_loss: 2.596
Iter: 150000
D loss: 0.4149
G_loss: 2.711
Iter: 151000
D loss: 0.4372
G_loss: 2.75
Iter: 152000
D loss: 0.3478
G_loss: 2.725
Iter: 153000
D loss: 0.5213
G_loss: 2.754
Iter: 154000
D loss: 0.4596
G_loss: 2.627
Iter: 155000
D loss: 0.5945
G_loss: 2.894
Iter: 156000
D loss: 0.4364
G_loss: 2.734
Iter: 157000
D loss: 0.4627
G_loss: 2.974
Iter: 158000
D loss: 0.5497
G_loss: 2.57
Iter: 159000
D loss: 0.405
G_loss: 2.781
Iter: 160000
D loss: 0.4347
G_loss: 2.784
Iter: 161000
D loss: 0.5982
G_loss: 2.343
Iter: 162000
D loss: 0.4696
G_loss: 2.646
Iter: 163000
D loss: 0.4753
G_loss: 2.665
Iter: 164000
D loss: 0.3958
G_loss: 2.712
Iter: 165000
D loss: 0.4392
G_loss: 2.772
Iter: 166000
D loss: 0.4629
G_loss: 2.808
Iter: 167000
D loss: 0.505
G_loss: 3.164
Iter: 168000
D loss: 0.4861
G_loss: 2.654
Iter: 169000
D loss: 0.4868
G_loss: 3.029
Iter: 170000
D loss: 0.4686
G_loss: 3.031
Iter: 171000
D loss: 0.4126
G_loss: 2.924
Iter: 172000
D loss: 0.4418
G_loss: 3.02
Iter: 173000
D loss: 0.48
G_loss: 2.527
Iter: 174000
D loss: 0.5016
G_loss: 2.885
Iter: 175000
D loss: 0.4959
G_loss: 2.652
Iter: 176000
D loss: 0.4895
G_loss: 3.068
Iter: 177000
D loss: 0.5014
G_loss: 2.874
Iter: 178000
D loss: 0.35
G_loss: 2.54
Iter: 179000
D loss: 0.4125
G_loss: 2.67
Iter: 180000
D loss: 0.4413
G_loss: 2.825
Iter: 181000
D loss: 0.4834
G_loss: 2.992
Iter: 182000
D loss: 0.4504
G_loss: 2.994
Iter: 183000
D loss: 0.4806
G_loss: 2.801
Iter: 184000
D loss: 0.4002
G_loss: 3.03
Iter: 185000
D loss: 0.5614
G_loss: 2.813
Iter: 186000
D loss: 0.4339
G_loss: 2.695
Iter: 187000
D loss: 0.4366
G_loss: 3.178
Iter: 188000
D loss: 0.4254
G_loss: 2.8
Iter: 189000
D loss: 0.4011
G_loss: 2.805
Iter: 190000
D loss: 0.3461
G_loss: 3.089
Iter: 191000
D loss: 0.4336
G_loss: 2.698
Iter: 192000
D loss: 0.381
G_loss: 2.889
Iter: 193000
D loss: 0.381
G_loss: 2.839
Iter: 194000
D loss: 0.4994
G_loss: 2.565
Iter: 195000
D loss: 0.3866
G_loss: 3.228
Iter: 196000
D loss: 0.447
G_loss: 2.54
Iter: 197000
D loss: 0.4347
G_loss: 2.974
Iter: 198000
D loss: 0.4382
G_loss: 2.952
Iter: 199000
D loss: 0.4991
G_loss: 2.791
Iter: 200000
D loss: 0.4671
G_loss: 2.857
Iter: 201000
D loss: 0.4219
G_loss: 3.127
Iter: 202000
D loss: 0.4649
G_loss: 2.819
Iter: 203000
D loss: 0.4194
G_loss: 2.831
Iter: 204000
D loss: 0.3203
G_loss: 3.034
Iter: 205000
D loss: 0.4903
G_loss: 2.609
Iter: 206000
D loss: 0.4918
G_loss: 3.091
Iter: 207000
D loss: 0.3992
G_loss: 3.403
Iter: 208000
D loss: 0.5082
G_loss: 2.679
Iter: 209000
D loss: 0.3978
G_loss: 2.865
Iter: 210000
D loss: 0.4769
G_loss: 3.038
Iter: 211000
D loss: 0.4109
G_loss: 2.454
Iter: 212000
D loss: 0.4438
G_loss: 3.288
Iter: 213000
D loss: 0.382
G_loss: 3.286
Iter: 214000
D loss: 0.3667
G_loss: 3.144
Iter: 215000
D loss: 0.4312
G_loss: 2.92
Iter: 216000
D loss: 0.3487
G_loss: 2.813
Iter: 217000
D loss: 0.3618
G_loss: 2.962
Iter: 218000
D loss: 0.4617
G_loss: 2.901
Iter: 219000
D loss: 0.3277
G_loss: 3.012
Iter: 220000
D loss: 0.3814
G_loss: 3.078
Iter: 221000
D loss: 0.4956
G_loss: 2.749
Iter: 222000
D loss: 0.3789
G_loss: 3.114
Iter: 223000
D loss: 0.3688
G_loss: 3.089
Iter: 224000
D loss: 0.364
G_loss: 3.544
Iter: 225000
D loss: 0.387
G_loss: 2.99
Iter: 226000
D loss: 0.5714
G_loss: 3.223
Iter: 227000
D loss: 0.4255
G_loss: 3.173
Iter: 228000
D loss: 0.3271
G_loss: 2.964
Iter: 229000
D loss: 0.4663
G_loss: 3.241
Iter: 230000
D loss: 0.3565
G_loss: 3.483
Iter: 231000
D loss: 0.4669
G_loss: 3.364
Iter: 232000
D loss: 0.4331
G_loss: 3.078
Iter: 233000
D loss: 0.428
G_loss: 3.239
Iter: 234000
D loss: 0.4664
G_loss: 2.805
Iter: 235000
D loss: 0.5369
G_loss: 2.724
Iter: 236000
D loss: 0.3108
G_loss: 3.1
Iter: 237000
D loss: 0.3192
G_loss: 2.989
Iter: 238000
D loss: 0.4172
G_loss: 2.779
Iter: 239000
D loss: 0.3023
G_loss: 3.009
Iter: 240000
D loss: 0.5114
G_loss: 2.765
Iter: 241000
D loss: 0.4642
G_loss: 2.732
Iter: 242000
D loss: 0.4063
G_loss: 3.368
Iter: 243000
D loss: 0.4061
G_loss: 3.577
Iter: 244000
D loss: 0.3677
G_loss: 2.726
Iter: 245000
D loss: 0.3235
G_loss: 3.061
Iter: 246000
D loss: 0.301
G_loss: 3.029
Iter: 247000
D loss: 0.3593
G_loss: 3.135
Iter: 248000
D loss: 0.293
G_loss: 3.179
Iter: 249000
D loss: 0.3831
G_loss: 3.071
Iter: 250000
D loss: 0.3155
G_loss: 2.937
Iter: 251000
D loss: 0.4003
G_loss: 3.108
Iter: 252000
D loss: 0.3365
G_loss: 3.16
Iter: 253000
D loss: 0.4098
G_loss: 3.086
Iter: 254000
D loss: 0.4333
G_loss: 3.225
Iter: 255000
D loss: 0.333
G_loss: 2.78
Iter: 256000
D loss: 0.4532
G_loss: 3.486
Iter: 257000
D loss: 0.3673
G_loss: 2.995
Iter: 258000
D loss: 0.3818
G_loss: 3.306
Iter: 259000
D loss: 0.356
G_loss: 3.279
Iter: 260000
D loss: 0.3391
G_loss: 3.382
Iter: 261000
D loss: 0.3897
G_loss: 3.427
Iter: 262000
D loss: 0.3828
G_loss: 3.245
Iter: 263000
D loss: 0.3849
G_loss: 2.89
Iter: 264000
D loss: 0.4077
G_loss: 3.417
Iter: 265000
D loss: 0.4809
G_loss: 3.087
Iter: 266000
D loss: 0.3899
G_loss: 2.998
Iter: 267000
D loss: 0.3641
G_loss: 3.366
Iter: 268000
D loss: 0.4158
G_loss: 2.755
Iter: 269000
D loss: 0.2445
G_loss: 2.842
Iter: 270000
D loss: 0.4695
G_loss: 3.269
Iter: 271000
D loss: 0.4519
G_loss: 3.13
Iter: 272000
D loss: 0.2755
G_loss: 3.237
Iter: 273000
D loss: 0.3079
G_loss: 3.524
Iter: 274000
D loss: 0.3466
G_loss: 2.845
Iter: 275000
D loss: 0.3839
G_loss: 3.253
Iter: 276000
D loss: 0.3651
G_loss: 2.925
Iter: 277000
D loss: 0.3907
G_loss: 3.137
Iter: 278000
D loss: 0.4181
G_loss: 3.165
Iter: 279000
D loss: 0.3256
G_loss: 2.948
Iter: 280000
D loss: 0.3061
G_loss: 4.039
Iter: 281000
D loss: 0.305
G_loss: 3.002
Iter: 282000
D loss: 0.4027
G_loss: 3.146
Iter: 283000
D loss: 0.2988
G_loss: 3.43
Iter: 284000
D loss: 0.3738
G_loss: 2.781
Iter: 285000
D loss: 0.4318
G_loss: 3.143
Iter: 286000
D loss: 0.3674
G_loss: 2.801
Iter: 287000
D loss: 0.3956
G_loss: 3.678
Iter: 288000
D loss: 0.3356
G_loss: 2.799
Iter: 289000
D loss: 0.3824
G_loss: 2.962
Iter: 290000
D loss: 0.3466
G_loss: 3.62
Iter: 291000
D loss: 0.3513
G_loss: 3.239
Iter: 292000
D loss: 0.5429
G_loss: 3.389
Iter: 293000
D loss: 0.3016
G_loss: 3.013
Iter: 294000
D loss: 0.3698
G_loss: 2.878
Iter: 295000
D loss: 0.3039
G_loss: 3.466
Iter: 296000
D loss: 0.2872
G_loss: 2.83
Iter: 297000
D loss: 0.3303
G_loss: 3.706
Iter: 298000
D loss: 0.3501
G_loss: 3.022
Iter: 299000
D loss: 0.3423
G_loss: 3.079
Iter: 300000
D loss: 0.4542
G_loss: 3.0
Iter: 301000
D loss: 0.3665
G_loss: 2.957
Iter: 302000
D loss: 0.3652
G_loss: 3.14
Iter: 303000
D loss: 0.3165
G_loss: 3.242
Iter: 304000
D loss: 0.4046
G_loss: 3.293
Iter: 305000
D loss: 0.3454
G_loss: 3.059
Iter: 306000
D loss: 0.3747
G_loss: 3.012
Iter: 307000
D loss: 0.5227
G_loss: 3.177
Iter: 308000
D loss: 0.3386
G_loss: 3.289
Iter: 309000
D loss: 0.2649
G_loss: 3.056
Iter: 310000
D loss: 0.3343
G_loss: 3.018
Iter: 311000
D loss: 0.4001
G_loss: 3.165
Iter: 312000
D loss: 0.4011
G_loss: 3.068
Iter: 313000
D loss: 0.3795
G_loss: 3.351
Iter: 314000
D loss: 0.2492
G_loss: 3.31
Iter: 315000
D loss: 0.3929
G_loss: 3.387
Iter: 316000
D loss: 0.38
G_loss: 2.997
Iter: 317000
D loss: 0.3537
G_loss: 3.136
Iter: 318000
D loss: 0.4273
G_loss: 3.238
Iter: 319000
D loss: 0.2994
G_loss: 3.456
Iter: 320000
D loss: 0.2244
G_loss: 3.332
Iter: 321000
D loss: 0.2255
G_loss: 3.198
Iter: 322000
D loss: 0.3715
G_loss: 3.475
Iter: 323000
D loss: 0.3375
G_loss: 3.011
Iter: 324000
D loss: 0.2819
G_loss: 3.49
Iter: 325000
D loss: 0.3251
G_loss: 3.102
Iter: 326000
D loss: 0.3892
G_loss: 3.256
Iter: 327000
D loss: 0.336
G_loss: 3.006
Iter: 328000
D loss: 0.4611
G_loss: 3.238
Iter: 329000
D loss: 0.2983
G_loss: 3.261
Iter: 330000
D loss: 0.3081
G_loss: 3.04
Iter: 331000
D loss: 0.3848
G_loss: 3.396
Iter: 332000
D loss: 0.2836
G_loss: 2.988
Iter: 333000
D loss: 0.2016
G_loss: 3.377
Iter: 334000
D loss: 0.4176
G_loss: 3.456
Iter: 335000
D loss: 0.3413
G_loss: 3.269
Iter: 336000
D loss: 0.2577
G_loss: 3.358
Iter: 337000
D loss: 0.3024
G_loss: 3.003
Iter: 338000
D loss: 0.3703
G_loss: 3.134
Iter: 339000
D loss: 0.2748
G_loss: 3.308
Iter: 340000
D loss: 0.3149
G_loss: 3.21
Iter: 341000
D loss: 0.3277
G_loss: 3.18
Iter: 342000
D loss: 0.403
G_loss: 3.111
Iter: 343000
D loss: 0.2745
G_loss: 3.472
Iter: 344000
D loss: 0.3921
G_loss: 3.112
Iter: 345000
D loss: 0.2886
G_loss: 3.008
Iter: 346000
D loss: 0.3231
G_loss: 2.888
Iter: 347000
D loss: 0.3216
G_loss: 3.739
Iter: 348000
D loss: 0.3873
G_loss: 3.089
Iter: 349000
D loss: 0.2018
G_loss: 3.001
Iter: 350000
D loss: 0.2804
G_loss: 2.948
Iter: 351000
D loss: 0.2807
G_loss: 3.307
Iter: 352000
D loss: 0.3033
G_loss: 3.028
Iter: 353000
D loss: 0.3058
G_loss: 3.403
Iter: 354000
D loss: 0.3413
G_loss: 2.627
Iter: 355000
D loss: 0.2357
G_loss: 3.314
Iter: 356000
D loss: 0.3531
G_loss: 3.307
Iter: 357000
D loss: 0.4806
G_loss: 3.368
Iter: 358000
D loss: 0.2333
G_loss: 3.305
Iter: 359000
D loss: 0.322
G_loss: 3.706
Iter: 360000
D loss: 0.3056
G_loss: 3.478
Iter: 361000
D loss: 0.3109
G_loss: 3.146
Iter: 362000
D loss: 0.3134
G_loss: 3.193
Iter: 363000
D loss: 0.3746
G_loss: 2.986
Iter: 364000
D loss: 0.3331
G_loss: 3.636
Iter: 365000
D loss: 0.3034
G_loss: 2.914
Iter: 366000
D loss: 0.2778
G_loss: 3.322
Iter: 367000
D loss: 0.3858
G_loss: 2.984
Iter: 368000
D loss: 0.1867
G_loss: 3.19
Iter: 369000
D loss: 0.1791
G_loss: 3.16
Iter: 370000
D loss: 0.3102
G_loss: 3.123
Iter: 371000
D loss: 0.2869
G_loss: 3.276
Iter: 372000
D loss: 0.2736
G_loss: 3.05
Iter: 373000
D loss: 0.2827
G_loss: 3.017
Iter: 374000
D loss: 0.318
G_loss: 3.859
Iter: 375000
D loss: 0.2506
G_loss: 3.327
Iter: 376000
D loss: 0.2926
G_loss: 3.402
Iter: 377000
D loss: 0.3579
G_loss: 3.027
Iter: 378000
D loss: 0.3307
G_loss: 3.286
Iter: 379000
D loss: 0.3569
G_loss: 3.323
Iter: 380000
D loss: 0.3769
G_loss: 3.176
Iter: 381000
D loss: 0.2395
G_loss: 3.081
Iter: 382000
D loss: 0.3862
G_loss: 3.261
Iter: 383000
D loss: 0.3951
G_loss: 3.144
Iter: 384000
D loss: 0.176
G_loss: 3.684
Iter: 385000
D loss: 0.3269
G_loss: 3.029
Iter: 386000
D loss: 0.291
G_loss: 3.464
Iter: 387000
D loss: 0.1834
G_loss: 3.629
Iter: 388000
D loss: 0.1598
G_loss: 3.496
Iter: 389000
D loss: 0.2546
G_loss: 3.611
Iter: 390000
D loss: 0.3678
G_loss: 2.992
Iter: 391000
D loss: 0.1874
G_loss: 3.452
Iter: 392000
D loss: 0.2704
G_loss: 2.993
Iter: 393000
D loss: 0.2211
G_loss: 3.341
Iter: 394000
D loss: 0.3005
G_loss: 3.172
Iter: 395000
D loss: 0.3762
G_loss: 3.89
Iter: 396000
D loss: 0.3607
G_loss: 2.76
Iter: 397000
D loss: 0.3465
G_loss: 3.364
Iter: 398000
D loss: 0.2993
G_loss: 3.222
Iter: 399000
D loss: 0.3102
G_loss: 2.914
Iter: 400000
D loss: 0.2325
G_loss: 3.106
Iter: 401000
D loss: 0.2365
G_loss: 3.179
Iter: 402000
D loss: 0.4196
G_loss: 3.185
Iter: 403000
D loss: 0.3064
G_loss: 2.886
Iter: 404000
D loss: 0.2539
G_loss: 2.939
Iter: 405000
D loss: 0.2577
G_loss: 2.704
Iter: 406000
D loss: 0.3115
G_loss: 2.677
Iter: 407000
D loss: 0.3984
G_loss: 3.005
Iter: 408000
D loss: 0.3035
G_loss: 2.964
Iter: 409000
D loss: 0.2121
G_loss: 3.547
Iter: 410000
D loss: 0.263
G_loss: 3.18
Iter: 411000
D loss: 0.3651
G_loss: 2.82
Iter: 412000
D loss: 0.35
G_loss: 2.883
Iter: 413000
D loss: 0.2087
G_loss: 3.58
Iter: 414000
D loss: 0.2967
G_loss: 3.238
Iter: 415000
D loss: 0.2854
G_loss: 3.156
Iter: 416000
D loss: 0.2597
G_loss: 3.03
Iter: 417000
D loss: 0.4599
G_loss: 3.378
Iter: 418000
D loss: 0.2984
G_loss: 3.017
Iter: 419000
D loss: 0.2905
G_loss: 3.228
Iter: 420000
D loss: 0.2628
G_loss: 3.015
Iter: 421000
D loss: 0.3861
G_loss: 3.387
Iter: 422000
D loss: 0.2089
G_loss: 3.162
Iter: 423000
D loss: 0.3006
G_loss: 3.092
Iter: 424000
D loss: 0.3272
G_loss: 3.545
Iter: 425000
D loss: 0.363
G_loss: 3.811
Iter: 426000
D loss: 0.2468
G_loss: 3.221
Iter: 427000
D loss: 0.3962
G_loss: 2.969
Iter: 428000
D loss: 0.3004
G_loss: 3.143
Iter: 429000
D loss: 0.3746
G_loss: 3.194
Iter: 430000
D loss: 0.333
G_loss: 3.308
Iter: 431000
D loss: 0.2317
G_loss: 3.047
Iter: 432000
D loss: 0.2104
G_loss: 3.217
Iter: 433000
D loss: 0.1962
G_loss: 3.647
Iter: 434000
D loss: 0.3435
G_loss: 3.281
Iter: 435000
D loss: 0.2551
G_loss: 2.988
Iter: 436000
D loss: 0.337
G_loss: 3.029
Iter: 437000
D loss: 0.1609
G_loss: 3.134
Iter: 438000
D loss: 0.2578
G_loss: 2.899
Iter: 439000
D loss: 0.2843
G_loss: 2.702
Iter: 440000
D loss: 0.293
G_loss: 3.033
Iter: 441000
D loss: 0.265
G_loss: 2.597
Iter: 442000
D loss: 0.4579
G_loss: 3.589
Iter: 443000
D loss: 0.2451
G_loss: 3.038
Iter: 444000
D loss: 0.3336
G_loss: 3.208
Iter: 445000
D loss: 0.3487
G_loss: 3.328
Iter: 446000
D loss: 0.5067
G_loss: 3.253
Iter: 447000
D loss: 0.1649
G_loss: 3.214
Iter: 448000
D loss: 0.4033
G_loss: 2.837
Iter: 449000
D loss: 0.2792
G_loss: 3.366
Iter: 450000
D loss: 0.271
G_loss: 3.193
Iter: 451000
D loss: 0.2621
G_loss: 2.704
Iter: 452000
D loss: 0.2495
G_loss: 3.322
Iter: 453000
D loss: 0.3205
G_loss: 2.978
Iter: 454000
D loss: 0.2242
G_loss: 2.857
Iter: 455000
D loss: 0.2252
G_loss: 3.065
Iter: 456000
D loss: 0.1806
G_loss: 3.589
Iter: 457000
D loss: 0.2192
G_loss: 3.043
Iter: 458000
D loss: 0.1946
G_loss: 3.391
Iter: 459000
D loss: 0.2419
G_loss: 3.143
Iter: 460000
D loss: 0.2828
G_loss: 2.794
Iter: 461000
D loss: 0.3025
G_loss: 3.165
Iter: 462000
D loss: 0.2675
G_loss: 3.058
Iter: 463000
D loss: 0.2117
G_loss: 3.261
Iter: 464000
D loss: 0.2925
G_loss: 3.166
Iter: 465000
D loss: 0.246
G_loss: 3.14
Iter: 466000
D loss: 0.2852
G_loss: 2.742
Iter: 467000
D loss: 0.2286
G_loss: 2.91
Iter: 468000
D loss: 0.2499
G_loss: 2.962
Iter: 469000
D loss: 0.3392
G_loss: 3.03
Iter: 470000
D loss: 0.2059
G_loss: 3.146
Iter: 471000
D loss: 0.2649
G_loss: 3.241
Iter: 472000
D loss: 0.3122
G_loss: 3.089
Iter: 473000
D loss: 0.2567
G_loss: 2.906
Iter: 474000
D loss: 0.3858
G_loss: 3.506
Iter: 475000
D loss: 0.2071
G_loss: 2.891
Iter: 476000
D loss: 0.2542
G_loss: 3.071
Iter: 477000
D loss: 0.1394
G_loss: 3.308
Iter: 478000
D loss: 0.2868
G_loss: 2.84
Iter: 479000
D loss: 0.2363
G_loss: 3.231
Iter: 480000
D loss: 0.2698
G_loss: 3.492
Iter: 481000
D loss: 0.2451
G_loss: 3.359
Iter: 482000
D loss: 0.2398
G_loss: 2.967
Iter: 483000
D loss: 0.3568
G_loss: 2.923
Iter: 484000
D loss: 0.2344
G_loss: 3.13
Iter: 485000
D loss: 0.2987
G_loss: 3.311
Iter: 486000
D loss: 0.3293
G_loss: 3.112
Iter: 487000
D loss: 0.2234
G_loss: 2.933
Iter: 488000
D loss: 0.257
G_loss: 2.702
Iter: 489000
D loss: 0.2386
G_loss: 3.006
Iter: 490000
D loss: 0.3294
G_loss: 2.926
Iter: 491000
D loss: 0.214
G_loss: 3.235
Iter: 492000
D loss: 0.1553
G_loss: 3.225
Iter: 493000
D loss: 0.3075
G_loss: 3.016
Iter: 494000
D loss: 0.2062
G_loss: 2.895
Iter: 495000
D loss: 0.2888
G_loss: 3.411
Iter: 496000
D loss: 0.3759
G_loss: 3.295
Iter: 497000
D loss: 0.2379
G_loss: 3.115
Iter: 498000
D loss: 0.2327
G_loss: 3.145
Iter: 499000
D loss: 0.1641
G_loss: 3.333
Iter: 500000
D loss: 0.3464
G_loss: 3.023
Iter: 501000
D loss: 0.351
G_loss: 3.046
Iter: 502000
D loss: 0.1949
G_loss: 3.064
Iter: 503000
D loss: 0.2477
G_loss: 2.805
Iter: 504000
D loss: 0.3087
G_loss: 2.999
Iter: 505000
D loss: 0.2876
G_loss: 3.247
Iter: 506000
D loss: 0.2956
G_loss: 3.54
Iter: 507000
D loss: 0.1908
G_loss: 3.128
Iter: 508000
D loss: 0.2727
G_loss: 3.257
Iter: 509000
D loss: 0.2493
G_loss: 3.336
Iter: 510000
D loss: 0.2053
G_loss: 2.942
Iter: 511000
D loss: 0.2437
G_loss: 3.12
Iter: 512000
D loss: 0.2441
G_loss: 3.72
Iter: 513000
D loss: 0.4195
G_loss: 3.333
Iter: 514000
D loss: 0.2309
G_loss: 3.235
Iter: 515000
D loss: 0.2438
G_loss: 3.027
Iter: 516000
D loss: 0.3388
G_loss: 3.31
Iter: 517000
D loss: 0.2132
G_loss: 3.391
Iter: 518000
D loss: 0.1517
G_loss: 3.278
Iter: 519000
D loss: 0.2011
G_loss: 2.941
Iter: 520000
D loss: 0.1803
G_loss: 3.161
Iter: 521000
D loss: 0.3158
G_loss: 3.324
Iter: 522000
D loss: 0.2949
G_loss: 3.266
Iter: 523000
D loss: 0.2309
G_loss: 3.345
Iter: 524000
D loss: 0.1708
G_loss: 3.379
Iter: 525000
D loss: 0.5243
G_loss: 3.528
Iter: 526000
D loss: 0.2673
G_loss: 3.42
Iter: 527000
D loss: 0.2467
G_loss: 3.324
Iter: 528000
D loss: 0.2718
G_loss: 3.086
Iter: 529000
D loss: 0.3205
G_loss: 3.274
Iter: 530000
D loss: 0.1666
G_loss: 3.284
Iter: 531000
D loss: 0.3151
G_loss: 3.166
Iter: 532000
D loss: 0.3624
G_loss: 3.184
Iter: 533000
D loss: 0.2768
G_loss: 3.106
Iter: 534000
D loss: 0.2611
G_loss: 3.609
Iter: 535000
D loss: 0.2286
G_loss: 3.443
Iter: 536000
D loss: 0.2484
G_loss: 3.019
Iter: 537000
D loss: 0.2028
G_loss: 3.218
Iter: 538000
D loss: 0.2628
G_loss: 3.047
Iter: 539000
D loss: 0.1665
G_loss: 3.296
Iter: 540000
D loss: 0.1748
G_loss: 3.194
Iter: 541000
D loss: 0.2464
G_loss: 3.36
Iter: 542000
D loss: 0.2441
G_loss: 3.142
Iter: 543000
D loss: 0.337
G_loss: 2.824
Iter: 544000
D loss: 0.3385
G_loss: 3.636
Iter: 545000
D loss: 0.345
G_loss: 3.133
Iter: 546000
D loss: 0.1984
G_loss: 3.471
Iter: 547000
D loss: 0.2089
G_loss: 2.936
Iter: 548000
D loss: 0.1675
G_loss: 3.513
Iter: 549000
D loss: 0.2291
G_loss: 3.593
Iter: 550000
D loss: 0.2241
G_loss: 3.013
Iter: 551000
D loss: 0.3379
G_loss: 3.109
Iter: 552000
D loss: 0.1857
G_loss: 3.621
Iter: 553000
D loss: 0.1917
G_loss: 3.526
Iter: 554000
D loss: 0.2165
G_loss: 3.21
Iter: 555000
D loss: 0.2045
G_loss: 3.21
Iter: 556000
D loss: 0.2102
G_loss: 3.147
Iter: 557000
D loss: 0.3712
G_loss: 3.232
Iter: 558000
D loss: 0.1666
G_loss: 3.375
Iter: 559000
D loss: 0.2547
G_loss: 3.285
Iter: 560000
D loss: 0.2582
G_loss: 3.059
Iter: 561000
D loss: 0.1918
G_loss: 3.057
Iter: 562000
D loss: 0.247
G_loss: 3.324
Iter: 563000
D loss: 0.1983
G_loss: 3.418
Iter: 564000
D loss: 0.2402
G_loss: 3.097
Iter: 565000
D loss: 0.2718
G_loss: 3.391
Iter: 566000
D loss: 0.2159
G_loss: 2.893
Iter: 567000
D loss: 0.2415
G_loss: 3.122
Iter: 568000
D loss: 0.2683
G_loss: 2.95
Iter: 569000
D loss: 0.2294
G_loss: 3.171
Iter: 570000
D loss: 0.2483
G_loss: 3.139
Iter: 571000
D loss: 0.3145
G_loss: 2.793
Iter: 572000
D loss: 0.2064
G_loss: 3.281
Iter: 573000
D loss: 0.2039
G_loss: 3.469
Iter: 574000
D loss: 0.1974
G_loss: 3.346
Iter: 575000
D loss: 0.2608
G_loss: 3.043
Iter: 576000
D loss: 0.2977
G_loss: 3.104
Iter: 577000
D loss: 0.1711
G_loss: 3.302
Iter: 578000
D loss: 0.225
G_loss: 3.048
Iter: 579000
D loss: 0.2431
G_loss: 2.886
Iter: 580000
D loss: 0.297
G_loss: 3.187
Iter: 581000
D loss: 0.2901
G_loss: 3.245
Iter: 582000
D loss: 0.2462
G_loss: 2.979
Iter: 583000
D loss: 0.2423
G_loss: 3.284
Iter: 584000
D loss: 0.1745
G_loss: 3.627
Iter: 585000
D loss: 0.387
G_loss: 2.883
Iter: 586000
D loss: 0.2659
G_loss: 3.171
Iter: 587000
D loss: 0.1617
G_loss: 3.538
Iter: 588000
D loss: 0.1601
G_loss: 3.284
Iter: 589000
D loss: 0.1648
G_loss: 3.14
Iter: 590000
D loss: 0.2406
G_loss: 3.588
Iter: 591000
D loss: 0.1768
G_loss: 3.539
Iter: 592000
D loss: 0.2865
G_loss: 2.963
Iter: 593000
D loss: 0.225
G_loss: 3.009
Iter: 594000
D loss: 0.2467
G_loss: 3.68
Iter: 595000
D loss: 0.3592
G_loss: 2.96
Iter: 596000
D loss: 0.2518
G_loss: 2.907
Iter: 597000
D loss: 0.366
G_loss: 3.095
Iter: 598000
D loss: 0.2125
G_loss: 2.963
Iter: 599000
D loss: 0.27
G_loss: 3.025
Iter: 600000
D loss: 0.3191
G_loss: 2.719
Iter: 601000
D loss: 0.2395
G_loss: 3.458
Iter: 602000
D loss: 0.2153
G_loss: 3.033
Iter: 603000
D loss: 0.3231
G_loss: 3.185
Iter: 604000
D loss: 0.2576
G_loss: 3.01
Iter: 605000
D loss: 0.2436
G_loss: 2.884
Iter: 606000
D loss: 0.2317
G_loss: 3.368
Iter: 607000
D loss: 0.2147
G_loss: 3.486
Iter: 608000
D loss: 0.3389
G_loss: 3.043
Iter: 609000
D loss: 0.2741
G_loss: 2.99
Iter: 610000
D loss: 0.2505
G_loss: 3.303
Iter: 611000
D loss: 0.1119
G_loss: 3.158
Iter: 612000
D loss: 0.3302
G_loss: 3.532
Iter: 613000
D loss: 0.1893
G_loss: 3.358
Iter: 614000
D loss: 0.2278
G_loss: 3.221
Iter: 615000
D loss: 0.2425
G_loss: 3.031
Iter: 616000
D loss: 0.2782
G_loss: 3.169
Iter: 617000
D loss: 0.3068
G_loss: 2.93
Iter: 618000
D loss: 0.1983
G_loss: 3.333
Iter: 619000
D loss: 0.2267
G_loss: 3.359
Iter: 620000
D loss: 0.159
G_loss: 3.562
Iter: 621000
D loss: 0.3046
G_loss: 3.14
Iter: 622000
D loss: 0.2135
G_loss: 3.3
Iter: 623000
D loss: 0.1714
G_loss: 3.352
Iter: 624000
D loss: 0.2475
G_loss: 3.278
Iter: 625000
D loss: 0.1457
G_loss: 3.2
Iter: 626000
D loss: 0.2329
G_loss: 3.238
Iter: 627000
D loss: 0.3304
G_loss: 3.297
Iter: 628000
D loss: 0.187
G_loss: 3.164
Iter: 629000
D loss: 0.2419
G_loss: 3.126
Iter: 630000
D loss: 0.27
G_loss: 3.191
Iter: 631000
D loss: 0.4296
G_loss: 3.215
Iter: 632000
D loss: 0.3368
G_loss: 3.206
Iter: 633000
D loss: 0.2355
G_loss: 3.194
Iter: 634000
D loss: 0.2248
G_loss: 3.472
Iter: 635000
D loss: 0.2134
G_loss: 3.23
Iter: 636000
D loss: 0.1967
G_loss: 3.572
Iter: 637000
D loss: 0.3138
G_loss: 3.529
Iter: 638000
D loss: 0.1624
G_loss: 3.115
Iter: 639000
D loss: 0.2297
G_loss: 3.321
Iter: 640000
D loss: 0.2438
G_loss: 3.54
Iter: 641000
D loss: 0.1845
G_loss: 3.163
Iter: 642000
D loss: 0.2813
G_loss: 3.143
Iter: 643000
D loss: 0.2181
G_loss: 3.108
Iter: 644000
D loss: 0.1485
G_loss: 3.234
Iter: 645000
D loss: 0.2695
G_loss: 3.382
Iter: 646000
D loss: 0.2339
G_loss: 3.301
Iter: 647000
D loss: 0.238
G_loss: 3.529
Iter: 648000
D loss: 0.3153
G_loss: 3.489
Iter: 649000
D loss: 0.1465
G_loss: 3.301
Iter: 650000
D loss: 0.2233
G_loss: 3.117
Iter: 651000
D loss: 0.2265
G_loss: 3.019
Iter: 652000
D loss: 0.2159
G_loss: 3.621
Iter: 653000
D loss: 0.3052
G_loss: 3.618
Iter: 654000
D loss: 0.2265
G_loss: 3.777
Iter: 655000
D loss: 0.2284
G_loss: 3.556
Iter: 656000
D loss: 0.2262
G_loss: 3.287
Iter: 657000
D loss: 0.1994
G_loss: 3.69
Iter: 658000
D loss: 0.2243
G_loss: 3.333
Iter: 659000
D loss: 0.2649
G_loss: 3.353
Iter: 660000
D loss: 0.1891
G_loss: 3.572
Iter: 661000
D loss: 0.107
G_loss: 3.751
Iter: 662000
D loss: 0.1923
G_loss: 3.407
Iter: 663000
D loss: 0.1228
G_loss: 3.241
Iter: 664000
D loss: 0.2384
G_loss: 3.175
Iter: 665000
D loss: 0.3018
G_loss: 3.317
Iter: 666000
D loss: 0.2341
G_loss: 3.544
Iter: 667000
D loss: 0.254
G_loss: 2.959
Iter: 668000
D loss: 0.1899
G_loss: 2.876
Iter: 669000
D loss: 0.1461
G_loss: 3.527
Iter: 670000
D loss: 0.2825
G_loss: 3.015
Iter: 671000
D loss: 0.2968
G_loss: 3.517
Iter: 672000
D loss: 0.2804
G_loss: 3.324
Iter: 673000
D loss: 0.2607
G_loss: 3.475
Iter: 674000
D loss: 0.2868
G_loss: 3.442
Iter: 675000
D loss: 0.1854
G_loss: 3.472
Iter: 676000
D loss: 0.1895
G_loss: 3.493
Iter: 677000
D loss: 0.356
G_loss: 3.555
Iter: 678000
D loss: 0.2386
G_loss: 3.205
Iter: 679000
D loss: 0.27
G_loss: 4.77
Iter: 680000
D loss: 0.2295
G_loss: 3.057
Iter: 681000
D loss: 0.2443
G_loss: 2.976
Iter: 682000
D loss: 0.2899
G_loss: 3.2
Iter: 683000
D loss: 0.2999
G_loss: 2.885
Iter: 684000
D loss: 0.2249
G_loss: 3.134
Iter: 685000
D loss: 0.2225
G_loss: 3.224
Iter: 686000
D loss: 0.2511
G_loss: 3.579
Iter: 687000
D loss: 0.2068
G_loss: 3.14
Iter: 688000
D loss: 0.2933
G_loss: 2.9
Iter: 689000
D loss: 0.3127
G_loss: 2.965
Iter: 690000
D loss: 0.1845
G_loss: 3.295
Iter: 691000
D loss: 0.242
G_loss: 3.134
Iter: 692000
D loss: 0.1978
G_loss: 3.655
Iter: 693000
D loss: 0.2482
G_loss: 3.543
Iter: 694000
D loss: 0.2198
G_loss: 3.145
Iter: 695000
D loss: 0.2971
G_loss: 3.295
Iter: 696000
D loss: 0.3052
G_loss: 3.623
Iter: 697000
D loss: 0.307
G_loss: 3.359
Iter: 698000
D loss: 0.1797
G_loss: 3.309
Iter: 699000
D loss: 0.2059
G_loss: 3.317
Iter: 700000
D loss: 0.1643
G_loss: 3.152
Iter: 701000
D loss: 0.1896
G_loss: 3.308
Iter: 702000
D loss: 0.2544
G_loss: 3.455
Iter: 703000
D loss: 0.2362
G_loss: 3.584
Iter: 704000
D loss: 0.2033
G_loss: 3.421
Iter: 705000
D loss: 0.3564
G_loss: 3.217
Iter: 706000
D loss: 0.1822
G_loss: 3.238
Iter: 707000
D loss: 0.1989
G_loss: 3.226
Iter: 708000
D loss: 0.2215
G_loss: 3.258
Iter: 709000
D loss: 0.1599
G_loss: 3.478
Iter: 710000
D loss: 0.225
G_loss: 3.169
Iter: 711000
D loss: 0.1904
G_loss: 3.496
Iter: 712000
D loss: 0.2872
G_loss: 3.124
Iter: 713000
D loss: 0.3396
G_loss: 3.353
Iter: 714000
D loss: 0.272
G_loss: 3.457
Iter: 715000
D loss: 0.1641
G_loss: 3.227
Iter: 716000
D loss: 0.1872
G_loss: 3.175
Iter: 717000
D loss: 0.2204
G_loss: 3.266
Iter: 718000
D loss: 0.1738
G_loss: 3.782
Iter: 719000
D loss: 0.2064
G_loss: 3.548
Iter: 720000
D loss: 0.2378
G_loss: 3.592
Iter: 721000
D loss: 0.2182
G_loss: 3.814
Iter: 722000
D loss: 0.1924
G_loss: 3.297
Iter: 723000
D loss: 0.166
G_loss: 3.466
Iter: 724000
D loss: 0.1371
G_loss: 3.369
Iter: 725000
D loss: 0.2581
G_loss: 3.737
Iter: 726000
D loss: 0.2569
G_loss: 3.233
Iter: 727000
D loss: 0.1518
G_loss: 3.568
Iter: 728000
D loss: 0.2033
G_loss: 3.533
Iter: 729000
D loss: 0.2889
G_loss: 3.524
Iter: 730000
D loss: 0.1676
G_loss: 3.362
Iter: 731000
D loss: 0.2749
G_loss: 3.451
Iter: 732000
D loss: 0.2439
G_loss: 3.217
Iter: 733000
D loss: 0.1883
G_loss: 3.466
Iter: 734000
D loss: 0.2062
G_loss: 3.444
Iter: 735000
D loss: 0.2259
G_loss: 4.156
Iter: 736000
D loss: 0.1723
G_loss: 3.242
Iter: 737000
D loss: 0.1561
G_loss: 3.984
Iter: 738000
D loss: 0.2395
G_loss: 3.614
Iter: 739000
D loss: 0.2414
G_loss: 3.674
Iter: 740000
D loss: 0.2542
G_loss: 3.704
Iter: 741000
D loss: 0.1478
G_loss: 3.147
Iter: 742000
D loss: 0.2395
G_loss: 3.601
Iter: 743000
D loss: 0.134
G_loss: 3.146
Iter: 744000
D loss: 0.2192
G_loss: 3.289
Iter: 745000
D loss: 0.1801
G_loss: 3.337
Iter: 746000
D loss: 0.2186
G_loss: 3.185
Iter: 747000
D loss: 0.2462
G_loss: 3.527
Iter: 748000
D loss: 0.2783
G_loss: 3.758
Iter: 749000
D loss: 0.2387
G_loss: 3.215
Iter: 750000
D loss: 0.1466
G_loss: 3.383
Iter: 751000
D loss: 0.1694
G_loss: 3.285
Iter: 752000
D loss: 0.1787
G_loss: 3.7
Iter: 753000
D loss: 0.1671
G_loss: 3.802
Iter: 754000
D loss: 0.2022
G_loss: 3.387
Iter: 755000
D loss: 0.1398
G_loss: 3.547
Iter: 756000
D loss: 0.235
G_loss: 3.522
Iter: 757000
D loss: 0.19
G_loss: 3.678
Iter: 758000
D loss: 0.1686
G_loss: 3.844
Iter: 759000
D loss: 0.09918
G_loss: 4.142
Iter: 760000
D loss: 0.2729
G_loss: 3.55
Iter: 761000
D loss: 0.1812
G_loss: 3.162
Iter: 762000
D loss: 0.1905
G_loss: 3.677
Iter: 763000
D loss: 0.1788
G_loss: 3.565
Iter: 764000
D loss: 0.2277
G_loss: 3.319
Iter: 765000
D loss: 0.2115
G_loss: 3.591
Iter: 766000
D loss: 0.1696
G_loss: 3.892
Iter: 767000
D loss: 0.2761
G_loss: 3.44
Iter: 768000
D loss: 0.1272
G_loss: 3.624
Iter: 769000
D loss: 0.1941
G_loss: 2.987
Iter: 770000
D loss: 0.151
G_loss: 3.88
Iter: 771000
D loss: 0.2883
G_loss: 3.846
Iter: 772000
D loss: 0.1235
G_loss: 3.671
Iter: 773000
D loss: 0.1935
G_loss: 3.698
Iter: 774000
D loss: 0.3969
G_loss: 3.806
Iter: 775000
D loss: 0.1576
G_loss: 4.208
Iter: 776000
D loss: 0.2489
G_loss: 3.734
Iter: 777000
D loss: 0.3095
G_loss: 3.073
Iter: 778000
D loss: 0.3787
G_loss: 3.777
Iter: 779000
D loss: 0.274
G_loss: 3.777
Iter: 780000
D loss: 0.2544
G_loss: 3.341
Iter: 781000
D loss: 0.1771
G_loss: 3.335
Iter: 782000
D loss: 0.213
G_loss: 3.209
Iter: 783000
D loss: 0.1572
G_loss: 3.501
Iter: 784000
D loss: 0.2181
G_loss: 3.331
Iter: 785000
D loss: 0.1682
G_loss: 4.065
Iter: 786000
D loss: 0.238
G_loss: 3.42
Iter: 787000
D loss: 0.1986
G_loss: 3.4
Iter: 788000
D loss: 0.1913
G_loss: 3.489
Iter: 789000
D loss: 0.3082
G_loss: 4.185
Iter: 790000
D loss: 0.1316
G_loss: 3.714
Iter: 791000
D loss: 0.07559
G_loss: 3.455
Iter: 792000
D loss: 0.2785
G_loss: 3.614
Iter: 793000
D loss: 0.1894
G_loss: 3.543
Iter: 794000
D loss: 0.1549
G_loss: 3.316
Iter: 795000
D loss: 0.2494
G_loss: 3.774
Iter: 796000
D loss: 0.1958
G_loss: 3.667
Iter: 797000
D loss: 0.1536
G_loss: 3.266
Iter: 798000
D loss: 0.2807
G_loss: 3.256
Iter: 799000
D loss: 0.1746
G_loss: 3.68
Iter: 800000
D loss: 0.1295
G_loss: 3.37
Iter: 801000
D loss: 0.1591
G_loss: 3.624
Iter: 802000
D loss: 0.2973
G_loss: 3.763
Iter: 803000
D loss: 0.1612
G_loss: 3.389
Iter: 804000
D loss: 0.1476
G_loss: 4.051
Iter: 805000
D loss: 0.2911
G_loss: 4.136
Iter: 806000
D loss: 0.1111
G_loss: 3.614
Iter: 807000
D loss: 0.1975
G_loss: 3.673
Iter: 808000
D loss: 0.1573
G_loss: 3.491
Iter: 809000
D loss: 0.2062
G_loss: 3.766
Iter: 810000
D loss: 0.2258
G_loss: 3.701
Iter: 811000
D loss: 0.3427
G_loss: 3.349
Iter: 812000
D loss: 0.2079
G_loss: 3.921
Iter: 813000
D loss: 0.1729
G_loss: 3.317
Iter: 814000
D loss: 0.1892
G_loss: 3.953
Iter: 815000
D loss: 0.1558
G_loss: 3.487
Iter: 816000
D loss: 0.2644
G_loss: 3.536
Iter: 817000
D loss: 0.2732
G_loss: 3.644
Iter: 818000
D loss: 0.1557
G_loss: 3.586
Iter: 819000
D loss: 0.2439
G_loss: 3.35
Iter: 820000
D loss: 0.1508
G_loss: 3.216
Iter: 821000
D loss: 0.204
G_loss: 3.246
Iter: 822000
D loss: 0.1285
G_loss: 3.409
Iter: 823000
D loss: 0.1257
G_loss: 3.355
Iter: 824000
D loss: 0.141
G_loss: 3.696
Iter: 825000
D loss: 0.09579
G_loss: 3.964
Iter: 826000
D loss: 0.3356
G_loss: 3.564
Iter: 827000
D loss: 0.1836
G_loss: 3.175
Iter: 828000
D loss: 0.1491
G_loss: 3.423
Iter: 829000
D loss: 0.1526
G_loss: 3.696
Iter: 830000
D loss: 0.2182
G_loss: 3.362
Iter: 831000
D loss: 0.1846
G_loss: 3.226
Iter: 832000
D loss: 0.1698
G_loss: 3.433
Iter: 833000
D loss: 0.2193
G_loss: 3.391
Iter: 834000
D loss: 0.2434
G_loss: 3.494
Iter: 835000
D loss: 0.1417
G_loss: 3.667
Iter: 836000
D loss: 0.2032
G_loss: 3.487
Iter: 837000
D loss: 0.1324
G_loss: 3.922
Iter: 838000
D loss: 0.1301
G_loss: 3.824
Iter: 839000
D loss: 0.2615
G_loss: 3.896
Iter: 840000
D loss: 0.142
G_loss: 3.856
Iter: 841000
D loss: 0.169
G_loss: 3.476
Iter: 842000
D loss: 0.1456
G_loss: 3.089
Iter: 843000
D loss: 0.2677
G_loss: 3.735
Iter: 844000
D loss: 0.2056
G_loss: 3.802
Iter: 845000
D loss: 0.1818
G_loss: 3.466
Iter: 846000
D loss: 0.2538
G_loss: 3.68
Iter: 847000
D loss: 0.1806
G_loss: 3.414
Iter: 848000
D loss: 0.1854
G_loss: 3.592
Iter: 849000
D loss: 0.2321
G_loss: 3.858
Iter: 850000
D loss: 0.1767
G_loss: 3.632
Iter: 851000
D loss: 0.1464
G_loss: 3.194
Iter: 852000
D loss: 0.2123
G_loss: 3.563
Iter: 853000
D loss: 0.1703
G_loss: 3.67
Iter: 854000
D loss: 0.2406
G_loss: 3.562
Iter: 855000
D loss: 0.2378
G_loss: 3.676
Iter: 856000
D loss: 0.2471
G_loss: 3.713
Iter: 857000
D loss: 0.1842
G_loss: 3.476
Iter: 858000
D loss: 0.1431
G_loss: 3.737
Iter: 859000
D loss: 0.2655
G_loss: 3.606
Iter: 860000
D loss: 0.1491
G_loss: 3.919
Iter: 861000
D loss: 0.1807
G_loss: 3.415
Iter: 862000
D loss: 0.1679
G_loss: 3.224
Iter: 863000
D loss: 0.1328
G_loss: 3.443
Iter: 864000
D loss: 0.2518
G_loss: 3.482
Iter: 865000
D loss: 0.1977
G_loss: 3.959
Iter: 866000
D loss: 0.2717
G_loss: 3.818
Iter: 867000
D loss: 0.1366
G_loss: 3.611
Iter: 868000
D loss: 0.09269
G_loss: 3.952
Iter: 869000
D loss: 0.1505
G_loss: 3.743
Iter: 870000
D loss: 0.1921
G_loss: 3.821
Iter: 871000
D loss: 0.1971
G_loss: 4.069
Iter: 872000
D loss: 0.1597
G_loss: 3.582
Iter: 873000
D loss: 0.1971
G_loss: 3.608
Iter: 874000
D loss: 0.1352
G_loss: 3.414
Iter: 875000
D loss: 0.1412
G_loss: 3.667
Iter: 876000
D loss: 0.168
G_loss: 3.918
Iter: 877000
D loss: 0.1916
G_loss: 3.067
Iter: 878000
D loss: 0.1538
G_loss: 3.393
Iter: 879000
D loss: 0.1955
G_loss: 3.461
Iter: 880000
D loss: 0.2431
G_loss: 3.112
Iter: 881000
D loss: 0.2096
G_loss: 3.676
Iter: 882000
D loss: 0.1337
G_loss: 3.645
Iter: 883000
D loss: 0.2114
G_loss: 3.611
Iter: 884000
D loss: 0.3033
G_loss: 3.729
Iter: 885000
D loss: 0.2466
G_loss: 3.669
Iter: 886000
D loss: 0.1785
G_loss: 3.667
Iter: 887000
D loss: 0.183
G_loss: 4.349
Iter: 888000
D loss: 0.3768
G_loss: 3.806
Iter: 889000
D loss: 0.1315
G_loss: 3.505
Iter: 890000
D loss: 0.2957
G_loss: 3.606
Iter: 891000
D loss: 0.1651
G_loss: 3.651
Iter: 892000
D loss: 0.1615
G_loss: 3.357
Iter: 893000
D loss: 0.2094
G_loss: 3.74
Iter: 894000
D loss: 0.1948
G_loss: 3.639
Iter: 895000
D loss: 0.1651
G_loss: 3.319
Iter: 896000
D loss: 0.1348
G_loss: 3.72
Iter: 897000
D loss: 0.3188
G_loss: 3.671
Iter: 898000
D loss: 0.1998
G_loss: 3.386
Iter: 899000
D loss: 0.1165
G_loss: 3.434
Iter: 900000
D loss: 0.137
G_loss: 3.808
Iter: 901000
D loss: 0.1285
G_loss: 3.654
Iter: 902000
D loss: 0.1976
G_loss: 3.602
Iter: 903000
D loss: 0.2083
G_loss: 3.46
Iter: 904000
D loss: 0.1432
G_loss: 3.862
Iter: 905000
D loss: 0.2557
G_loss: 3.554
Iter: 906000
D loss: 0.1612
G_loss: 3.36
Iter: 907000
D loss: 0.2199
G_loss: 3.903
Iter: 908000
D loss: 0.1881
G_loss: 3.798
Iter: 909000
D loss: 0.2579
G_loss: 3.665
Iter: 910000
D loss: 0.2947
G_loss: 4.01
Iter: 911000
D loss: 0.2328
G_loss: 3.988
Iter: 912000
D loss: 0.1583
G_loss: 3.96
Iter: 913000
D loss: 0.2154
G_loss: 3.508
Iter: 914000
D loss: 0.1215
G_loss: 3.595
Iter: 915000
D loss: 0.2063
G_loss: 3.574
Iter: 916000
D loss: 0.2569
G_loss: 4.016
Iter: 917000
D loss: 0.1569
G_loss: 3.749
Iter: 918000
D loss: 0.2388
G_loss: 4.248
Iter: 919000
D loss: 0.1965
G_loss: 3.775
Iter: 920000
D loss: 0.1442
G_loss: 3.736
Iter: 921000
D loss: 0.135
G_loss: 4.064
Iter: 922000
D loss: 0.1318
G_loss: 3.544
Iter: 923000
D loss: 0.1541
G_loss: 3.847
Iter: 924000
D loss: 0.1433
G_loss: 3.869
Iter: 925000
D loss: 0.261
G_loss: 3.489
Iter: 926000
D loss: 0.2182
G_loss: 3.768
Iter: 927000
D loss: 0.2016
G_loss: 3.607
Iter: 928000
D loss: 0.1853
G_loss: 3.767
Iter: 929000
D loss: 0.3451
G_loss: 3.7
Iter: 930000
D loss: 0.1733
G_loss: 3.903
Iter: 931000
D loss: 0.3005
G_loss: 3.953
Iter: 932000
D loss: 0.1109
G_loss: 3.862
Iter: 933000
D loss: 0.1432
G_loss: 3.777
Iter: 934000
D loss: 0.1024
G_loss: 3.496
Iter: 935000
D loss: 0.1932
G_loss: 3.787
Iter: 936000
D loss: 0.1985
G_loss: 3.553
Iter: 937000
D loss: 0.2199
G_loss: 3.708
Iter: 938000
D loss: 0.2405
G_loss: 4.064
Iter: 939000
D loss: 0.1208
G_loss: 3.501
Iter: 940000
D loss: 0.1933
G_loss: 3.712
Iter: 941000
D loss: 0.1117
G_loss: 3.932
Iter: 942000
D loss: 0.116
G_loss: 4.042
Iter: 943000
D loss: 0.1803
G_loss: 4.188
Iter: 944000
D loss: 0.1432
G_loss: 3.43
Iter: 945000
D loss: 0.2393
G_loss: 3.707
Iter: 946000
D loss: 0.09669
G_loss: 4.261
Iter: 947000
D loss: 0.2052
G_loss: 3.949
Iter: 948000
D loss: 0.1569
G_loss: 3.998
Iter: 949000
D loss: 0.2604
G_loss: 3.422
Iter: 950000
D loss: 0.127
G_loss: 3.559
Iter: 951000
D loss: 0.0865
G_loss: 3.712
Iter: 952000
D loss: 0.1853
G_loss: 4.052
Iter: 953000
D loss: 0.1568
G_loss: 4.267
Iter: 954000
D loss: 0.2473
G_loss: 3.848
Iter: 955000
D loss: 0.1935
G_loss: 3.398
Iter: 956000
D loss: 0.1153
G_loss: 4.242
Iter: 957000
D loss: 0.2894
G_loss: 3.541
Iter: 958000
D loss: 0.2526
G_loss: 3.722
Iter: 959000
D loss: 0.1921
G_loss: 3.725
Iter: 960000
D loss: 0.1468
G_loss: 4.32
Iter: 961000
D loss: 0.2058
G_loss: 3.469
Iter: 962000
D loss: 0.2457
G_loss: 3.207
Iter: 963000
D loss: 0.1368
G_loss: 3.243
Iter: 964000
D loss: 0.1626
G_loss: 3.524
Iter: 965000
D loss: 0.2024
G_loss: 3.664
Iter: 966000
D loss: 0.2339
G_loss: 3.703
Iter: 967000
D loss: 0.09176
G_loss: 3.814
Iter: 968000
D loss: 0.1933
G_loss: 3.449
Iter: 969000
D loss: 0.1257
G_loss: 3.649
Iter: 970000
D loss: 0.1197
G_loss: 3.889
Iter: 971000
D loss: 0.09248
G_loss: 4.303
Iter: 972000
D loss: 0.1157
G_loss: 4.018
Iter: 973000
D loss: 0.2459
G_loss: 3.745
Iter: 974000
D loss: 0.1363
G_loss: 3.794
Iter: 975000
D loss: 0.1774
G_loss: 3.961
Iter: 976000
D loss: 0.1306
G_loss: 3.614
Iter: 977000
D loss: 0.1732
G_loss: 3.274
Iter: 978000
D loss: 0.2852
G_loss: 3.889
Iter: 979000
D loss: 0.1105
G_loss: 3.735
Iter: 980000
D loss: 0.274
G_loss: 4.031
Iter: 981000
D loss: 0.1704
G_loss: 3.536
Iter: 982000
D loss: 0.2157
G_loss: 3.391
Iter: 983000
D loss: 0.249
G_loss: 3.563
Iter: 984000
D loss: 0.263
G_loss: 3.959
Iter: 985000
D loss: 0.1704
G_loss: 3.901
Iter: 986000
D loss: 0.2113
G_loss: 4.029
Iter: 987000
D loss: 0.1187
G_loss: 3.559
Iter: 988000
D loss: 0.1795
G_loss: 3.779
Iter: 989000
D loss: 0.2453
G_loss: 3.877
Iter: 990000
D loss: 0.1927
G_loss: 3.835
Iter: 991000
D loss: 0.2889
G_loss: 3.649
Iter: 992000
D loss: 0.2511
G_loss: 3.736
Iter: 993000
D loss: 0.1963
G_loss: 3.518
Iter: 994000
D loss: 0.1559
G_loss: 4.24
Iter: 995000
D loss: 0.1713
G_loss: 3.647
Iter: 996000
D loss: 0.1735
G_loss: 3.445
Iter: 997000
D loss: 0.2216
G_loss: 3.759
Iter: 998000
D loss: 0.1491
G_loss: 4.028
Iter: 999000
D loss: 0.1784
G_loss: 4.136
out
dir we see that the GAN mode collapsedFix for that is to let discriminator see ground truth in mini batches
Here's a YouTube of I made from all 1000 images at 100ms delay
In [1]:
from IPython.display import HTML
# Youtube
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/ktxhiKhWoEE?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
Out[1]:
In [ ]:
Content source: nikbearbrown/Deep_Learning
Similar notebooks: