In [11]:
import importlib
import numpy as np
import toolbox
import annoStats
importlib.reload(toolbox)
importlib.reload(annoStats)
Out[11]:
<module 'annoStats' from '/Users/JLP/neurodata-dev/synaptome-stats/collman15v2/201710/annoStats.py'>
In [12]:
#cubes, loc, F0, nonzeros, ids = annoTightAll.testMain()
cubes, loc, Fmax = annoStats.testMain()
Synapsin647
VGluT1_647
In [16]:
loc
Out[16]:
array([[ 1, 3207, 3565],
[ 1, 3356, 2999],
[ 0, 3820, 2691],
[ 1, 3803, 2137],
[ 0, 4014, 2079],
[ 2, 3384, 2417],
[ 1, 2414, 3525],
[ 4, 1826, 3231],
[ 0, 3234, 4440],
[ 0, 2540, 5102],
[ 1, 2877, 4029],
[ 1, 1855, 1518],
[ 1, 1215, 4332],
[ 1, 1103, 5097],
[ 1, 534, 3196],
[ 1, 3796, 813],
[ 4, 2401, 2036],
[ 2, 2538, 458],
[ 0, 2559, 1030],
[ 2, 3000, 1606],
[ 1, 577, 3633],
[ 1, 896, 4357],
[ 3, 3306, 5545],
[ 1, 3550, 3514],
[ 0, 1386, 1130],
[ 0, 2673, 3184],
[ 2, 2296, 883],
[ 2, 2381, 5597],
[ 2, 3292, 1344],
[ 3, 2291, 1590],
[ 3, 3060, 4435],
[ 2, 1195, 4543],
[ 3, 506, 4339],
[ 4, 707, 5141],
[ 4, 3472, 4970],
[ 4, 3678, 4597],
[ 2, 892, 2163],
[ 5, 2557, 764],
[ 6, 1487, 1427],
[ 2, 2975, 5837],
[ 4, 1731, 4068],
[ 6, 1145, 118],
[ 25, 4249, 5447],
[ 24, 4134, 5816],
[ 25, 4130, 4874],
[ 26, 3978, 4306],
[ 23, 4078, 5188],
[ 22, 3637, 5267],
[ 20, 3289, 4771],
[ 24, 2647, 5646],
[ 22, 2918, 5877],
[ 25, 2969, 6002],
[ 16, 2977, 4968],
[ 20, 2950, 3993],
[ 25, 1854, 6174],
[ 26, 1825, 6071],
[ 26, 1644, 6111],
[ 24, 1785, 5567],
[ 18, 2188, 4393],
[ 26, 2195, 4582],
[ 25, 1488, 5620],
[ 25, 1339, 4853],
[ 26, 1315, 4411],
[ 23, 1168, 5895],
[ 22, 1105, 5411],
[ 19, 632, 5336],
[ 17, 850, 5693],
[ 13, 629, 5457],
[ 26, 909, 4379],
[ 26, 815, 4184],
[ 26, 1429, 3217],
[ 23, 1793, 2959],
[ 20, 1542, 3534],
[ 15, 893, 3703],
[ 23, 1908, 3849],
[ 21, 743, 3302],
[ 18, 1442, 2857],
[ 23, 1210, 2873],
[ 25, 2138, 3578],
[ 26, 2101, 2975],
[ 21, 2536, 2955],
[ 20, 2549, 3800],
[ 12, 2589, 3461],
[ 13, 2599, 4060],
[ 11, 2243, 4651],
[ 9, 1631, 3782],
[ 13, 1913, 3453],
[ 21, 1727, 2812],
[ 24, 1703, 3554],
[ 25, 3194, 3090],
[ 24, 3276, 3528],
[ 25, 3550, 3244],
[ 20, 3850, 3426],
[ 21, 2945, 2869],
[ 26, 4085, 3243],
[ 24, 4485, 2938],
[ 22, 4371, 3151],
[ 22, 4218, 3162],
[ 21, 4245, 3553],
[ 26, 3601, 2651],
[ 26, 4021, 2681],
[ 25, 4199, 2354],
[ 26, 3307, 1587],
[ 26, 3696, 1055],
[ 23, 3878, 1106],
[ 24, 3472, 1070],
[ 18, 3290, 1666],
[ 18, 2965, 1879],
[ 25, 2609, 2008],
[ 24, 2975, 1074],
[ 21, 3108, 2376],
[ 12, 2852, 1266],
[ 12, 2926, 1103],
[ 15, 3058, 1502],
[ 24, 2552, 1515],
[ 19, 3286, 914],
[ 25, 1666, 1889],
[ 21, 1650, 2302],
[ 24, 2358, 2648],
[ 19, 1577, 1769],
[ 26, 2017, 2489],
[ 16, 1745, 1940],
[ 12, 2537, 2662],
[ 8, 2038, 2132],
[ 5, 2118, 2026],
[ 5, 1770, 2774],
[ 5, 1707, 2018],
[ 6, 2656, 2076],
[ 10, 1664, 3445],
[ 13, 1900, 3091],
[ 21, 2116, 1995],
[ 24, 1755, 958],
[ 17, 1880, 1178],
[ 15, 1730, 1552],
[ 17, 2203, 1383],
[ 15, 2308, 1657],
[ 16, 2501, 845],
[ 24, 1763, 2374],
[ 24, 1098, 2666],
[ 23, 981, 2353],
[ 24, 814, 1336],
[ 24, 608, 1043],
[ 18, 592, 1794],
[ 15, 982, 1609],
[ 12, 1537, 2730],
[ 10, 1417, 2587],
[ 10, 853, 1232],
[ 8, 460, 1029],
[ 5, 563, 2017],
[ 7, 1107, 1650],
[ 8, 1035, 1747],
[ 10, 1433, 929],
[ 17, 1184, 2539],
[ 19, 1220, 1615],
[ 26, 503, 1466],
[ 16, 3913, 1194],
[ 16, 4142, 1256],
[ 12, 3882, 2187],
[ 10, 3388, 825],
[ 7, 3663, 367],
[ 14, 2979, 993],
[ 20, 3478, 479],
[ 25, 3753, 323],
[ 17, 3628, 3121],
[ 16, 3583, 3574],
[ 14, 3538, 3385],
[ 12, 3192, 3785],
[ 10, 2805, 3160],
[ 10, 3217, 2852],
[ 10, 3099, 2692],
[ 10, 3547, 2635],
[ 13, 4035, 3339],
[ 13, 2717, 89],
[ 14, 3924, 5300],
[ 15, 4194, 5097],
[ 16, 3303, 5331],
[ 14, 3495, 5028],
[ 16, 2929, 4300],
[ 9, 3761, 4299],
[ 7, 3594, 4839],
[ 5, 3159, 4786],
[ 4, 3731, 5193],
[ 4, 3348, 3962],
[ 6, 3103, 4153],
[ 4, 3355, 4212],
[ 4, 3620, 4164],
[ 6, 3865, 3993],
[ 11, 1559, 4383],
[ 7, 1352, 4500],
[ 5, 980, 4164],
[ 4, 905, 4748],
[ 7, 631, 4645],
[ 10, 699, 3314],
[ 15, 527, 4320],
[ 15, 523, 4644],
[ 13, 388, 3536],
[ 12, 610, 3618],
[ 12, 295, 3815],
[ 11, 355, 3122],
[ 11, 993, 3042],
[ 13, 1431, 5003],
[ 11, 1230, 5296],
[ 5, 2483, 4523],
[ 12, 2296, 5226],
[ 15, 2436, 5039],
[ 13, 1851, 4684],
[ 5, 2639, 1092],
[ 10, 2360, 1509],
[ 12, 2080, 734],
[ 9, 2228, 682],
[ 7, 1704, 1214],
[ 15, 1678, 3231],
[ 13, 1444, 3425],
[ 14, 1312, 2845],
[ 12, 1008, 2284],
[ 7, 2016, 4136],
[ 6, 356, 651],
[ 13, 266, 370],
[ 20, 1401, 586],
[ 15, 297, 1177],
[ 16, 3559, 1859],
[ 4, 3834, 1578],
[ 2, 4140, 1922],
[ 22, 4462, 3292],
[ 21, 4476, 3490],
[ 4, 4070, 2461],
[ 14, 1665, 3620],
[ 7, 2048, 3588],
[ 8, 185, 4938],
[ 17, 3595, 4351],
[ 4, 2417, 5470],
[ 20, 3916, 4585],
[ 20, 4150, 1758],
[ 12, 1221, 786],
[ 7, 3880, 48],
[ 9, 3401, 66]])
In [ ]:
idx = np.argsort([3,2,1])
np.transpose(loc[:,idx])
In [ ]:
toolbox.mainOUT(np.transpose(loc[:,idx]), ['x','y','z'], "locations_test.csv")
In [14]:
len(Fmax[0])
Out[14]:
236
In [15]:
Fmax
Out[15]:
[[99,
150,
112,
167,
167,
58,
149,
94,
112,
112,
170,
141,
115,
111,
84,
107,
114,
255,
69,
104,
114,
142,
235,
96,
127,
126,
76,
152,
106,
98,
172,
99,
123,
86,
122,
201,
56,
132,
191,
106,
119,
255,
130,
96,
103,
66,
130,
95,
129,
99,
183,
183,
145,
71,
98,
98,
98,
136,
118,
79,
109,
83,
79,
244,
50,
99,
219,
107,
124,
124,
91,
255,
159,
79,
255,
103,
212,
221,
255,
78,
109,
104,
69,
123,
173,
242,
255,
146,
159,
205,
139,
162,
255,
113,
158,
98,
202,
202,
162,
76,
52,
100,
97,
208,
208,
142,
82,
93,
139,
73,
165,
186,
165,
186,
154,
154,
81,
107,
64,
209,
64,
111,
111,
118,
145,
122,
250,
114,
91,
255,
81,
255,
255,
209,
113,
106,
94,
107,
221,
189,
122,
122,
222,
151,
212,
162,
103,
128,
120,
113,
113,
118,
212,
151,
97,
147,
147,
164,
188,
121,
154,
64,
57,
234,
255,
255,
52,
60,
63,
63,
65,
117,
78,
215,
175,
166,
115,
71,
151,
122,
132,
63,
151,
114,
151,
151,
104,
119,
117,
115,
180,
141,
135,
118,
163,
135,
120,
132,
125,
66,
131,
183,
163,
75,
141,
74,
125,
106,
79,
79,
191,
255,
255,
212,
72,
111,
126,
126,
182,
139,
73,
53,
167,
202,
202,
164,
231,
99,
88,
144,
152,
66,
51,
118,
194,
208],
[61,
108,
44,
52,
64,
39,
71,
83,
113,
17,
57,
87,
41,
111,
106,
144,
57,
63,
116,
68,
136,
64,
76,
91,
54,
52,
115,
153,
68,
77,
110,
40,
57,
103,
104,
104,
71,
65,
72,
72,
98,
70,
69,
60,
78,
80,
85,
88,
92,
85,
60,
60,
96,
224,
58,
58,
58,
125,
63,
64,
81,
76,
109,
159,
46,
61,
159,
68,
42,
42,
70,
57,
139,
86,
75,
111,
58,
63,
188,
48,
49,
224,
54,
63,
125,
85,
85,
57,
84,
255,
84,
71,
109,
255,
69,
49,
49,
67,
109,
55,
47,
73,
76,
65,
71,
53,
47,
74,
100,
63,
116,
93,
93,
75,
53,
42,
70,
95,
61,
131,
58,
134,
73,
134,
55,
133,
67,
59,
76,
72,
53,
82,
83,
72,
86,
86,
66,
95,
63,
52,
76,
57,
117,
133,
144,
144,
62,
100,
112,
74,
74,
129,
87,
112,
51,
88,
88,
86,
106,
129,
93,
106,
53,
81,
103,
78,
94,
99,
108,
63,
160,
93,
41,
61,
85,
88,
85,
93,
146,
104,
64,
49,
60,
97,
113,
113,
96,
77,
59,
56,
82,
82,
108,
118,
125,
108,
92,
92,
106,
72,
63,
111,
64,
131,
131,
101,
116,
86,
49,
74,
78,
72,
139,
115,
49,
129,
57,
122,
67,
82,
55,
39,
64,
49,
45,
70,
139,
69,
44,
146,
153,
101,
44,
84,
91,
129]]
In [ ]:
Content source: neurodata/synaptome-stats
Similar notebooks: