0.68 , lr: 0.1
17.86 , lr: 0.0975609756098
10.54 , lr: 0.0952380952381
11.12 , lr: 0.093023255814
17.12 , lr: 0.0909090909091
18.26 , lr: 0.0888888888889
12.5 , lr: 0.0869565217391
9.7 , lr: 0.0851063829787
10.28 , lr: 0.0833333333333
9.84 , lr: 0.0816326530612
9.88 , lr: 0.08
10.76 , lr: 0.078431372549
11.14 , lr: 0.0769230769231
15.68 , lr: 0.0754716981132
44.62 , lr: 0.0740740740741
27.0 , lr: 0.0727272727273
15.12 , lr: 0.0714285714286
9.68 , lr: 0.0701754385965
9.9 , lr: 0.0689655172414
9.62 , lr: 0.0677966101695
9.5 , lr: 0.0666666666667
9.82 , lr: 0.0655737704918
9.56 , lr: 0.0645161290323
9.78 , lr: 0.0634920634921
9.68 , lr: 0.0625
9.78 , lr: 0.0615384615385
11.72 , lr: 0.0606060606061
22.4 , lr: 0.0597014925373
27.36 , lr: 0.0588235294118
28.64 , lr: 0.0579710144928
25.68 , lr: 0.0571428571429
26.62 , lr: 0.056338028169
26.4 , lr: 0.0555555555556
29.24 , lr: 0.0547945205479
39.92 , lr: 0.0540540540541
42.7 , lr: 0.0533333333333
40.84 , lr: 0.0526315789474
39.62 , lr: 0.0519480519481
40.32 , lr: 0.0512820512821
41.0 , lr: 0.0506329113924
41.54 , lr: 0.05
41.34 , lr: 0.0493827160494
44.26 , lr: 0.0487804878049
37.88 , lr: 0.0481927710843
41.04 , lr: 0.047619047619
39.56 , lr: 0.0470588235294
42.08 , lr: 0.046511627907
37.32 , lr: 0.0459770114943
38.02 , lr: 0.0454545454545
40.24 , lr: 0.0449438202247
35.1 , lr: 0.0444444444444
40.3 , lr: 0.043956043956
36.74 , lr: 0.0434782608696
34.54 , lr: 0.0430107526882
38.32 , lr: 0.0425531914894
40.32 , lr: 0.0421052631579
32.54 , lr: 0.0416666666667
36.44 , lr: 0.0412371134021
47.32 , lr: 0.0408163265306
52.36 , lr: 0.040404040404
52.38 , lr: 0.04
52.18 , lr: 0.039603960396
43.68 , lr: 0.0392156862745
60.64 , lr: 0.0388349514563
46.24 , lr: 0.0384615384615
50.78 , lr: 0.0380952380952
87.3 , lr: 0.0377358490566
74.76 , lr: 0.0373831775701
68.16 , lr: 0.037037037037
74.68 , lr: 0.0366972477064
54.7 , lr: 0.0363636363636
56.2 , lr: 0.036036036036
89.48 , lr: 0.0357142857143
88.36 , lr: 0.0353982300885
139.68 , lr: 0.0350877192982
304.22 , lr: 0.0347826086957
270.7 , lr: 0.0344827586207
294.86 , lr: 0.034188034188
1951.04 , lr: 0.0338983050847
3749.08 , lr: 0.0336134453782
6700.78 , lr: 0.0333333333333
8032.06 , lr: 0.0330578512397
2111.2 , lr: 0.0327868852459
2062.28 , lr: 0.0325203252033
2978.16 , lr: 0.0322580645161
7493.94 , lr: 0.032
KeyboardInterruptTraceback (most recent call last)
<ipython-input-56-f0e3c412df23> in <module>()
18 for j in range(10000):
19 #next action
---> 20 a = model.next_action(s)
21
22 #take step
<ipython-input-55-b028503498ae> in next_action(self, state)
65
66 def next_action(self, state):
---> 67 actions = self.sess.run(self.Ps, feed_dict={self.s: [state]})[0]
68 n = len(actions)
69
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
764 try:
765 result = self._run(None, fetches, feed_dict, options_ptr,
--> 766 run_metadata_ptr)
767 if run_metadata:
768 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
911 # Validate and process feed_dict.
912 if feed_dict:
--> 913 feed_dict = nest.flatten_dict_items(feed_dict)
914 for feed, feed_val in feed_dict.items():
915 for subfeed, subfeed_val in _feed_fn(feed, feed_val):
/usr/local/lib/python2.7/dist-packages/tensorflow/python/util/nest.pyc in flatten_dict_items(dictionary)
171 raise TypeError("input must be a dictionary")
172 flat_dictionary = {}
--> 173 for i, v in six.iteritems(dictionary):
174 if not is_sequence(i):
175 if i in flat_dictionary:
/usr/local/lib/python2.7/dist-packages/six.pyc in iteritems(d, **kw)
597
598 def iteritems(d, **kw):
--> 599 return d.iteritems(**kw)
600
601 def iterlists(d, **kw):
KeyboardInterrupt: