In [2]:
import pandas as pd

In [4]:
df = pd.read_csv("data/url_logger.csv")

In [10]:
df['unit'] = 1

In [33]:
success = df[df.url_status_code ==200].unit.count()
success_grouped = df[df.url_status_code ==200].groupby('name').unit.count()

fail = df[df.url_status_code !=200].unit.count()
fail_grouped = df[df.url_status_code !=200].groupby('name').unit.count()

In [14]:
total_requests = df.url_status_code.sum()

In [61]:
print "Summary of URL Requests"
print "-" * 50
print "Percentage successful: %r" % (round(float(success)/ (success + fail), 2))
print "Total Succesful:", success
print "Total Unsuccesful:", fail
print "\n"


print 'Quantity of Articles Available'
print "-" * 50

for index, elem in enumerate(success_grouped):
    print success_grouped.index[index].capitalize(),": ", success_grouped[index]


Summary of URL Requests
--------------------------------------------------
Percentage successful: 0.49
Total Succesful: 261
Total Unsuccesful: 267


Quantity of Articles Available
--------------------------------------------------
Dailyobserver :  53
Frontpageafricaonline :  63
Gnnliberia :  49
Golministryofinformation :  68
Post1847 :  7
Theanalyst :  4
Thenewdawn :  17

In [ ]: