Graphics and packages in Julia

Visualization is a key topic in scientific computing. Currently there are several options available for producing different types of graphics in Julia.

Coming from Python, one of the most accessible (and full-featured) is PyPlot, which is a Julia wrapper to the pyplot submodule of the Python matplotlib library.

Installing packages

To install the PyPlot package, if it is not already installed, we do


In [1]:
Pkg.add("PyPlot")


INFO: Nothing to be done
INFO: METADATA is out-of-date — you may not have the latest version of PyPlot
INFO: Use `Pkg.update()` to get the latest versions of your packages

If the package requested is already installed, this will be reported with the message INFO: Nothing to be done, as shown above. It will also warn you if there may be a new version of the package available.

Pkg is the package manager. It uses git repositories, which are each cloned into their own sub-directory of the .julia directory in your home directory.

The list of packages currently available is at http://pkg.julialang.org/; it is growing rapidly.

Pkg checks each time to see if the METADATA.jl repository has been updated; this repository contains the information about available packages.

Pkg.update() will update to the latest versions of installed packages. (Currently this is an all-or-nothing operation, updating all installed packages.)

Using packages

To make the package accessible in our code, we use


In [2]:
using PyPlot


INFO: Loading help data...

using is analogous to from [package] import * in Python; it makes all names in the package available. We could instead use import PyPlot, in which case all names would be available as PyPlot.plot, etc.


In [4]:
x = rand(10)
y = rand(10)

p = plot(x, y, "ro-")


Out[4]:
1-element Array{Any,1}:
 PyObject <matplotlib.lines.Line2D object at 0x11880b790>

In [5]:
p


Out[5]:
1-element Array{Any,1}:
 PyObject <matplotlib.lines.Line2D object at 0x11880b790>

In [ ]:

An alternative is to use import instead:


In [3]:
import PyPlot

In [6]:
PyPlot.figure(figsize=(4,2))
PyPlot.plot(rand(10), rand(10))


Out[6]:
1-element Array{Any,1}:
 PyObject <matplotlib.lines.Line2D object at 0x10d548e50>

In [ ]:
PyPlot.save

Example: Eigenvalues of random matrices


In [3]:
L = 1000

diffs = []

for i in 1:10
    M = randn(L, L);
    M = Symmetric(M)

    lamb = eigvals(M);
    
    diffs = [diffs, diff(lamb)];
end

h = hist(diffs, 300)
plot(h[1][1:end-1], h[2])


Out[3]:
1-element Array{Any,1}:
 PyObject <matplotlib.lines.Line2D object at 0x11589ac10>

Gadfly

Gadfly is a native Julia plotting package, based on the Grammar of Graphics syntax, and thus with a similar flavour to R's ggplot package.


In [1]:
using Gadfly

In [2]:
xs = 1:10
ys = rand(10)

plot(x=xs, y=ys)


Out[2]:
x -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 -10 0 10 20 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 -1 0 1 2 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 y

The plot can be panned and zoomed directly in the browser.

Different geometries are available:


In [3]:
plot(x=xs, y=ys, Geom.line)


Out[3]:
x -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 -10 0 10 20 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 -1 0 1 2 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 y

In [7]:
plot(x=rand(10), y=rand(10), Geom.point, Geom.line(preserve_order=true))


Out[7]:
x -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 -1 0 1 2 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 -1 0 1 2 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 y

Note that the lines are drawn between points ordered in the $x$-direction. To avoid this, we use an argument to Geom.line:


In [8]:
p = plot(layer(x=rand(10), y=rand(10), color=[1], Geom.point, Geom.line(preserve_order=true)),
layer(x=rand(10), y=rand(10), Geom.point, Geom.line(preserve_order=true)),
Guide.XLabel("first"), Guide.YLabel("second"))


Out[8]:
first -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 -1 0 1 2 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 1.0 Color -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 -1 0 1 2 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 second

We can write to a PDF:


In [9]:
draw(PDF("stuff.pdf", 10cm, 5cm), p)

In [11]:
;open stuff.pdf

DataFrames

The DataFrames package provides pandas-like functionality.


In [9]:
Pkg.add("DataFrames")


INFO: Nothing to be done
INFO: METADATA is out-of-date — you may not have the latest version of DataFrames
INFO: Use `Pkg.update()` to get the latest versions of your packages

Gadfly has excellent integration with DataFrames:


In [10]:
Pkg.add("RDataSets")


INFO: Nothing to be done
INFO: METADATA is out-of-date — you may not have the latest version of RDataSets
INFO: Use `Pkg.update()` to get the latest versions of your packages

In [12]:
using Gadfly
using RDatasets

In [13]:
irises = dataset("datasets", "iris")
head(irises)


Out[13]:
SepalLengthSepalWidthPetalLengthPetalWidthSpecies
15.13.51.40.2setosa
24.93.01.40.2setosa
34.73.21.30.2setosa
44.63.11.50.2setosa
55.03.61.40.2setosa
65.43.91.70.4setosa

In [14]:
typeof(irises)


Out[14]:
DataFrame (constructor with 22 methods)

In [15]:
plot(irises, x="SepalLength", y="SepalWidth", Geom.point)


Out[15]:
SepalLength -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 0 5 10 15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 -2.5 0.0 2.5 5.0 7.5 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 SepalWidth

In [17]:
cars = dataset("car", "SLID")
head(cars)


Out[17]:
WagesEducationAgeSexLanguage
110.5615.040MaleEnglish
211.013.219MaleEnglish
3NA16.049MaleOther
417.7614.046MaleOther
5NA8.071MaleEnglish
614.016.050FemaleEnglish

In [18]:
plot(cars, x="Wages", color="Language", Geom.histogram)


Out[18]:
Wages -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 -50 -48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 -50 0 50 100 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 French English Other Language -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800 900 1000 1100 -500 -480 -460 -440 -420 -400 -380 -360 -340 -320 -300 -280 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 -500 0 500 1000 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Modules

A module is a way to encapsulate code in a namespace. The syntax is as follows

module NAME

import Base.show, Base.getindex   # imports to extend Base functions
export A, B   # exports

...

end

We can then do using NAME to use the functionality.

Example: Eigenvalues of random matrices


In [19]:
import PyPlot


INFO: Loading help data...

In [21]:
plt = PyPlot


Out[21]:
PyPlot

In [20]:
help("import")


No help information found.

In [22]:
plt.plot


Out[22]:
plot (generic function with 1 method)

In [25]:
macroexpand(:(@time begin sin(10); @time cos(10) end ))


Out[25]:
:(begin  # util.jl, line 50:
        local #3284#b0 = Base.gc_bytes() # line 51:
        local #3285#t0 = Base.time_ns() # line 52:
        local #3286#g0 = Base.gc_time_ns() # line 53:
        local #3287#val = begin  # In[25], line 1:
                    sin(10) # line 1:
                    begin  # util.jl, line 50:
                        local #3291#b0 = Base.gc_bytes() # line 51:
                        local #3292#t0 = Base.time_ns() # line 52:
                        local #3293#g0 = Base.gc_time_ns() # line 53:
                        local #3294#val = cos(10) # line 54:
                        local #3295#g1 = Base.gc_time_ns() # line 55:
                        local #3296#t1 = Base.time_ns() # line 56:
                        local #3297#b1 = Base.gc_bytes() # line 57:
                        Base.time_print(Base.-(#3296#t1,#3292#t0),Base.-(#3297#b1,#3291#b0),Base.-(#3295#g1,#3293#g0)) # line 58:
                        #3294#val
                    end
                end # line 54:
        local #3288#g1 = Base.gc_time_ns() # line 55:
        local #3289#t1 = Base.time_ns() # line 56:
        local #3290#b1 = Base.gc_bytes() # line 57:
        Base.time_print(Base.-(#3289#t1,#3285#t0),Base.-(#3290#b1,#3284#b0),Base.-(#3288#g1,#3286#g0)) # line 58:
        #3287#val
    end)

In [ ]:
i = 0
@time @until