In [1]:
import pandas as pd
import numpy as np
%matplotlib inline
In [2]:
initial = np.load("lstm_basic/initial.npy")
initial_df = pd.DataFrame(initial, columns=["initial"])
In [3]:
output1 = np.load("lstm_hidden1/output.npy")
output1_df = pd.DataFrame(output1, columns=["output (hidden: 1)"], index=range(len(initial), len(initial) + len(output1)))
losses1_df = pd.DataFrame(np.load("lstm_hidden1/losses.npy"), columns=["epoch", "loss (hidden: 1)"])
In [4]:
output2 = np.load("lstm_basic/output.npy")
output2_df = pd.DataFrame(output2, columns=["output (hidden: 2)"], index=range(len(initial), len(initial) + len(output2)))
losses2_df = pd.DataFrame(np.load("lstm_basic/losses.npy"), columns=["epoch", "loss (hidden: 2)"])
In [5]:
output3 = np.load("lstm_hidden3/output.npy")
output3_df = pd.DataFrame(output3, columns=["output (hidden: 3)"], index=range(len(initial), len(initial) + len(output3)))
losses3_df = pd.DataFrame(np.load("lstm_hidden3/losses.npy"), columns=["epoch", "loss (hidden: 3)"])
In [6]:
output4 = np.load("lstm_hidden4/output.npy")
output4_df = pd.DataFrame(output4, columns=["output (hidden: 4)"], index=range(len(initial), len(initial) + len(output4)))
losses4_df = pd.DataFrame(np.load("lstm_hidden4/losses.npy"), columns=["epoch", "loss (hidden: 4)"])
In [7]:
train = np.load("train_data/normal.npy")
train_df = pd.DataFrame(train[:, 0], columns=["train"])
In [8]:
merged = pd.concat([train_df, initial_df, output1_df, output2_df, output3_df, output4_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "-", "-", "-", "k--"])
Out[8]:
In [9]:
merged = pd.merge(losses1_df, losses2_df)
merged = pd.merge(merged, losses3_df)
merged = pd.merge(merged, losses4_df)
merged.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")
Out[9]:
In [ ]: