In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.1,
 'length_of_sequences': 70,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01,   6.43249060e-16,
         1.25333234e-01,   2.48689887e-01,   3.68124553e-01,
         4.81753674e-01,   5.87785252e-01,   6.84547106e-01,
         7.70513243e-01,   8.44327926e-01,   9.04827052e-01,
         9.51056516e-01,   9.82287251e-01,   9.98026728e-01,
         9.98026728e-01,   9.82287251e-01,   9.51056516e-01,
         9.04827052e-01,   8.44327926e-01,   7.70513243e-01,
         6.84547106e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([ 0.62315255,  0.54665452,  0.45530486,  0.35139382,  0.23411691,
        0.10390853, -0.03704954, -0.18447071, -0.33199799, -0.47185934,
       -0.59637409, -0.69993216, -0.78025371, -0.83813661, -0.87618113,
       -0.89748937, -0.90486014, -0.90046138, -0.88577843, -0.86167377,
       -0.82847089, -0.7860294 , -0.73380947, -0.67093927, -0.59631169,
       -0.50875121, -0.40730312, -0.29168874, -0.16291696, -0.02390003,
        0.12026483,  0.26274908,  0.39627424,  0.51472646,  0.61429727,
        0.69369882,  0.75362498,  0.7959376 ,  0.82294619,  0.83692265,
        0.83984011,  0.83326429,  0.8183316 ,  0.79576826,  0.76591957,
        0.72877949,  0.68401432,  0.63098687,  0.56879461,  0.49634039,
        0.41247401,  0.31623939,  0.20725003,  0.08616637, -0.04483444,
       -0.18176198, -0.31886524, -0.44922858, -0.56603056, -0.66413277,
       -0.74112803, -0.79724371, -0.83439213, -0.85509562, -0.86174446,
       -0.85624093, -0.83989686, -0.81345129, -0.77712923, -0.73070878,
       -0.6735937 , -0.60490686, -0.52363855, -0.42889339, -0.32027954,
       -0.19844738, -0.0656803 ,  0.07372547,  0.21365884,  0.34716868,
        0.46792889,  0.57150036,  0.65582365,  0.72092319,  0.76820105,
        0.79971325,  0.81763446,  0.82393724,  0.82023782,  0.80774677,
        0.78726935,  0.75922829,  0.7236889 ,  0.68038338,  0.62873554,
        0.56789714,  0.4968195 ,  0.41438788,  0.3196609 ,  0.21223342])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   4.79618609e-01],
       [  2.00000000e+01,   5.40107667e-01],
       [  3.00000000e+01,   5.15341938e-01],
       [  4.00000000e+01,   4.95510876e-01],
       [  5.00000000e+01,   4.94567722e-01],
       [  6.00000000e+01,   4.78342146e-01],
       [  7.00000000e+01,   3.75705034e-01],
       [  8.00000000e+01,   3.29462916e-01],
       [  9.00000000e+01,   2.24809900e-01],
       [  1.00000000e+02,   1.65608898e-01],
       [  1.10000000e+02,   1.24914169e-01],
       [  1.20000000e+02,   9.90404114e-02],
       [  1.30000000e+02,   8.22229981e-02],
       [  1.40000000e+02,   6.86122105e-02],
       [  1.50000000e+02,   5.31651005e-02],
       [  1.60000000e+02,   4.65173200e-02],
       [  1.70000000e+02,   3.75925787e-02],
       [  1.80000000e+02,   3.09311897e-02],
       [  1.90000000e+02,   3.17575373e-02],
       [  2.00000000e+02,   2.18343455e-02],
       [  2.10000000e+02,   2.06140764e-02],
       [  2.20000000e+02,   1.67572852e-02],
       [  2.30000000e+02,   1.36275645e-02],
       [  2.40000000e+02,   9.44721233e-03],
       [  2.50000000e+02,   8.43747705e-03],
       [  2.60000000e+02,   7.99871143e-03],
       [  2.70000000e+02,   5.43500297e-03],
       [  2.80000000e+02,   5.75964432e-03],
       [  2.90000000e+02,   4.18716064e-03],
       [  3.00000000e+02,   3.06826760e-03],
       [  3.10000000e+02,   3.11847567e-03],
       [  3.20000000e+02,   2.69980310e-03],
       [  3.30000000e+02,   3.20884516e-03],
       [  3.40000000e+02,   2.74455780e-03],
       [  3.50000000e+02,   2.47292593e-03],
       [  3.60000000e+02,   3.13712680e-03],
       [  3.70000000e+02,   2.77093076e-03],
       [  3.80000000e+02,   2.90882168e-03],
       [  3.90000000e+02,   2.75964569e-03],
       [  4.00000000e+02,   2.61654425e-03],
       [  4.10000000e+02,   2.36298260e-03],
       [  4.20000000e+02,   1.89715694e-03],
       [  4.30000000e+02,   2.72598863e-03],
       [  4.40000000e+02,   2.35387962e-03],
       [  4.50000000e+02,   2.18647951e-03],
       [  4.60000000e+02,   2.00867606e-03],
       [  4.70000000e+02,   2.31416081e-03],
       [  4.80000000e+02,   1.71974243e-03],
       [  4.90000000e+02,   2.09600385e-03],
       [  5.00000000e+02,   1.85976585e-03],
       [  5.10000000e+02,   2.05569528e-03],
       [  5.20000000e+02,   1.65785069e-03],
       [  5.30000000e+02,   2.02819193e-03],
       [  5.40000000e+02,   2.02111038e-03],
       [  5.50000000e+02,   1.81618938e-03],
       [  5.60000000e+02,   1.89268915e-03],
       [  5.70000000e+02,   2.16356432e-03],
       [  5.80000000e+02,   2.11596349e-03],
       [  5.90000000e+02,   1.80142466e-03],
       [  6.00000000e+02,   1.64836238e-03],
       [  6.10000000e+02,   1.77818921e-03],
       [  6.20000000e+02,   1.67977111e-03],
       [  6.30000000e+02,   1.66624179e-03],
       [  6.40000000e+02,   1.67892966e-03],
       [  6.50000000e+02,   1.82152027e-03],
       [  6.60000000e+02,   1.76722324e-03],
       [  6.70000000e+02,   1.72811956e-03],
       [  6.80000000e+02,   1.48373167e-03],
       [  6.90000000e+02,   1.69229286e-03],
       [  7.00000000e+02,   1.31136982e-03],
       [  7.10000000e+02,   1.53996621e-03],
       [  7.20000000e+02,   1.25463249e-03],
       [  7.30000000e+02,   1.59791415e-03],
       [  7.40000000e+02,   1.43514259e-03],
       [  7.50000000e+02,   1.39277999e-03],
       [  7.60000000e+02,   1.53124274e-03],
       [  7.70000000e+02,   1.35149702e-03],
       [  7.80000000e+02,   1.53238745e-03],
       [  7.90000000e+02,   1.40684459e-03],
       [  8.00000000e+02,   1.27870543e-03],
       [  8.10000000e+02,   1.22603297e-03],
       [  8.20000000e+02,   1.14512246e-03],
       [  8.30000000e+02,   1.38315081e-03],
       [  8.40000000e+02,   1.39701576e-03],
       [  8.50000000e+02,   1.33627886e-03],
       [  8.60000000e+02,   1.26489555e-03],
       [  8.70000000e+02,   1.13896106e-03],
       [  8.80000000e+02,   1.26927032e-03],
       [  8.90000000e+02,   1.36843114e-03],
       [  9.00000000e+02,   1.31426542e-03],
       [  9.10000000e+02,   1.23848603e-03],
       [  9.20000000e+02,   1.33252994e-03],
       [  9.30000000e+02,   1.22137694e-03],
       [  9.40000000e+02,   1.20844983e-03],
       [  9.50000000e+02,   1.25226867e-03],
       [  9.60000000e+02,   1.09944749e-03],
       [  9.70000000e+02,   1.21350121e-03],
       [  9.80000000e+02,   1.27549528e-03],
       [  9.90000000e+02,   1.20582082e-03],
       [  1.00000000e+03,   1.19363505e-03],
       [  1.01000000e+03,   1.17702549e-03],
       [  1.02000000e+03,   1.15889893e-03],
       [  1.03000000e+03,   1.13512506e-03],
       [  1.04000000e+03,   1.10094366e-03],
       [  1.05000000e+03,   1.09145883e-03],
       [  1.06000000e+03,   1.17636693e-03],
       [  1.07000000e+03,   1.07661111e-03],
       [  1.08000000e+03,   1.07177789e-03],
       [  1.09000000e+03,   1.15256640e-03],
       [  1.10000000e+03,   1.06110633e-03],
       [  1.11000000e+03,   1.05894019e-03],
       [  1.12000000e+03,   1.05167320e-03],
       [  1.13000000e+03,   1.07405696e-03],
       [  1.14000000e+03,   9.14291944e-04],
       [  1.15000000e+03,   9.55321477e-04],
       [  1.16000000e+03,   9.07967624e-04],
       [  1.17000000e+03,   9.84424958e-04],
       [  1.18000000e+03,   9.43598163e-04],
       [  1.19000000e+03,   1.01463776e-03],
       [  1.20000000e+03,   1.00621104e-03],
       [  1.21000000e+03,   9.81391873e-04],
       [  1.22000000e+03,   7.85237527e-04],
       [  1.23000000e+03,   1.03406829e-03],
       [  1.24000000e+03,   8.76088568e-04],
       [  1.25000000e+03,   1.06072787e-03],
       [  1.26000000e+03,   9.42769344e-04],
       [  1.27000000e+03,   8.39457964e-04],
       [  1.28000000e+03,   9.49165202e-04],
       [  1.29000000e+03,   8.40033987e-04],
       [  1.30000000e+03,   9.60244215e-04],
       [  1.31000000e+03,   7.37405440e-04],
       [  1.32000000e+03,   8.39766290e-04],
       [  1.33000000e+03,   8.13350256e-04],
       [  1.34000000e+03,   8.13845836e-04],
       [  1.35000000e+03,   8.06368422e-04],
       [  1.36000000e+03,   8.66328191e-04],
       [  1.37000000e+03,   7.94349180e-04],
       [  1.38000000e+03,   8.64449015e-04],
       [  1.39000000e+03,   8.33909493e-04],
       [  1.40000000e+03,   8.25901341e-04],
       [  1.41000000e+03,   8.59284715e-04],
       [  1.42000000e+03,   8.80539999e-04],
       [  1.43000000e+03,   6.52629649e-04],
       [  1.44000000e+03,   6.98186632e-04],
       [  1.45000000e+03,   8.46027280e-04],
       [  1.46000000e+03,   7.13806367e-04],
       [  1.47000000e+03,   7.84764416e-04],
       [  1.48000000e+03,   6.75049436e-04],
       [  1.49000000e+03,   8.29611847e-04],
       [  1.50000000e+03,   7.66571844e-04],
       [  1.51000000e+03,   7.86703837e-04],
       [  1.52000000e+03,   7.58278824e-04],
       [  1.53000000e+03,   7.49155879e-04],
       [  1.54000000e+03,   7.77323963e-04],
       [  1.55000000e+03,   6.74729177e-04],
       [  1.56000000e+03,   8.11565726e-04],
       [  1.57000000e+03,   7.40313611e-04],
       [  1.58000000e+03,   7.40257325e-04],
       [  1.59000000e+03,   6.88830740e-04],
       [  1.60000000e+03,   6.25791261e-04],
       [  1.61000000e+03,   6.56648888e-04],
       [  1.62000000e+03,   7.14924186e-04],
       [  1.63000000e+03,   7.83146184e-04],
       [  1.64000000e+03,   6.69811678e-04],
       [  1.65000000e+03,   6.50023343e-04],
       [  1.66000000e+03,   6.81165606e-04],
       [  1.67000000e+03,   6.20306411e-04],
       [  1.68000000e+03,   6.85493869e-04],
       [  1.69000000e+03,   7.69070699e-04],
       [  1.70000000e+03,   6.27239817e-04],
       [  1.71000000e+03,   6.44056650e-04],
       [  1.72000000e+03,   6.39265752e-04],
       [  1.73000000e+03,   7.88696285e-04],
       [  1.74000000e+03,   6.12740812e-04],
       [  1.75000000e+03,   6.23762200e-04],
       [  1.76000000e+03,   6.33345917e-04],
       [  1.77000000e+03,   6.08034898e-04],
       [  1.78000000e+03,   6.65509258e-04],
       [  1.79000000e+03,   5.66256291e-04],
       [  1.80000000e+03,   7.15761795e-04],
       [  1.81000000e+03,   6.15485595e-04],
       [  1.82000000e+03,   6.83100079e-04],
       [  1.83000000e+03,   6.79043238e-04],
       [  1.84000000e+03,   6.31776580e-04],
       [  1.85000000e+03,   5.98713290e-04],
       [  1.86000000e+03,   6.44068699e-04],
       [  1.87000000e+03,   6.19710481e-04],
       [  1.88000000e+03,   6.02419255e-04],
       [  1.89000000e+03,   5.36119041e-04],
       [  1.90000000e+03,   6.15597295e-04],
       [  1.91000000e+03,   6.27469446e-04],
       [  1.92000000e+03,   6.23598346e-04],
       [  1.93000000e+03,   6.30677911e-04],
       [  1.94000000e+03,   6.19192841e-04],
       [  1.95000000e+03,   6.06620044e-04],
       [  1.96000000e+03,   5.41625312e-04],
       [  1.97000000e+03,   6.27327943e-04],
       [  1.98000000e+03,   5.65266469e-04],
       [  1.99000000e+03,   6.04666828e-04],
       [  2.00000000e+03,   5.44412411e-04]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x10f349898>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x10f31b828>

In [ ]: