In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.1,
 'length_of_sequences': 30,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([-0.60306442, -0.70077664, -0.78205132, -0.84620517, -0.89326143,
       -0.92382586, -0.93904954, -0.94045317, -0.92962795, -0.90795422,
       -0.8764298 , -0.835603  , -0.78557295, -0.72602242, -0.65627342,
       -0.57537943, -0.482292  , -0.37616497, -0.25686926, -0.12573707,
        0.01364657,  0.15513034,  0.29082888,  0.41311783,  0.51668996,
        0.59940439,  0.66176069,  0.70576459,  0.73391479,  0.74858099,
        0.75172162,  0.74480528,  0.72882617,  0.70434958,  0.67155927,
        0.63030022,  0.5801155 ,  0.52029175,  0.44993258,  0.36808991,
        0.27399588,  0.16742785,  0.04920165, -0.07832778, -0.21103658,
       -0.3434065 , -0.46957177, -0.58457035, -0.68507075, -0.76928633,
       -0.83647203, -0.88654512, -0.91999412, -0.93787032, -0.94164139,
       -0.93290448, -0.91309279, -0.8832801 , -0.84409761, -0.79572409,
       -0.73791397, -0.67004812, -0.59121704, -0.50036979, -0.39658767,
       -0.27955657, -0.15027599, -0.01187316,  0.12994076,  0.2674607 ,
        0.39282864,  0.5001964 ,  0.58685023,  0.6528911 ,  0.70014256,
        0.7310788 ,  0.74812812,  0.75333935,  0.74827528,  0.73401803,
        0.7112115 ,  0.68011087,  0.64062506,  0.59235406,  0.53463143,
        0.46658844,  0.38726956,  0.29583859,  0.19191359,  0.07603712,
       -0.04980612, -0.18186958, -0.3148669 , -0.44289398, -0.56070101,
       -0.66458201, -0.75245315, -0.82338601, -0.87717086, -0.91417199])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   5.14299214e-01],
       [  2.00000000e+01,   4.06051934e-01],
       [  3.00000000e+01,   2.98576325e-01],
       [  4.00000000e+01,   2.31547311e-01],
       [  5.00000000e+01,   1.63580269e-01],
       [  6.00000000e+01,   1.20625131e-01],
       [  7.00000000e+01,   8.64456370e-02],
       [  8.00000000e+01,   6.48404285e-02],
       [  9.00000000e+01,   5.51027879e-02],
       [  1.00000000e+02,   3.80532108e-02],
       [  1.10000000e+02,   3.15546654e-02],
       [  1.20000000e+02,   2.28688810e-02],
       [  1.30000000e+02,   1.74451396e-02],
       [  1.40000000e+02,   1.58100855e-02],
       [  1.50000000e+02,   1.18094012e-02],
       [  1.60000000e+02,   8.99142399e-03],
       [  1.70000000e+02,   7.77208107e-03],
       [  1.80000000e+02,   7.64124142e-03],
       [  1.90000000e+02,   5.90149360e-03],
       [  2.00000000e+02,   5.60020562e-03],
       [  2.10000000e+02,   6.77929400e-03],
       [  2.20000000e+02,   5.05460612e-03],
       [  2.30000000e+02,   4.13913652e-03],
       [  2.40000000e+02,   4.51638177e-03],
       [  2.50000000e+02,   4.68806643e-03],
       [  2.60000000e+02,   4.16638888e-03],
       [  2.70000000e+02,   4.10682894e-03],
       [  2.80000000e+02,   3.96843534e-03],
       [  2.90000000e+02,   4.44243336e-03],
       [  3.00000000e+02,   3.75143532e-03],
       [  3.10000000e+02,   3.83800874e-03],
       [  3.20000000e+02,   4.64678090e-03],
       [  3.30000000e+02,   3.69035546e-03],
       [  3.40000000e+02,   3.19817546e-03],
       [  3.50000000e+02,   3.10582435e-03],
       [  3.60000000e+02,   3.48184933e-03],
       [  3.70000000e+02,   3.10967211e-03],
       [  3.80000000e+02,   3.22949374e-03],
       [  3.90000000e+02,   3.20322299e-03],
       [  4.00000000e+02,   2.79973168e-03],
       [  4.10000000e+02,   3.00264242e-03],
       [  4.20000000e+02,   3.11974948e-03],
       [  4.30000000e+02,   2.64310185e-03],
       [  4.40000000e+02,   2.81620654e-03],
       [  4.50000000e+02,   3.01243388e-03],
       [  4.60000000e+02,   2.87274132e-03],
       [  4.70000000e+02,   2.82932469e-03],
       [  4.80000000e+02,   2.67980853e-03],
       [  4.90000000e+02,   2.88124895e-03],
       [  5.00000000e+02,   2.07136036e-03],
       [  5.10000000e+02,   2.45733769e-03],
       [  5.20000000e+02,   2.27765110e-03],
       [  5.30000000e+02,   2.09642225e-03],
       [  5.40000000e+02,   2.43364787e-03],
       [  5.50000000e+02,   2.15963810e-03],
       [  5.60000000e+02,   1.90383196e-03],
       [  5.70000000e+02,   2.54397746e-03],
       [  5.80000000e+02,   2.44595297e-03],
       [  5.90000000e+02,   2.40491400e-03],
       [  6.00000000e+02,   2.13587098e-03],
       [  6.10000000e+02,   2.11449293e-03],
       [  6.20000000e+02,   2.49499036e-03],
       [  6.30000000e+02,   2.29623588e-03],
       [  6.40000000e+02,   2.07798206e-03],
       [  6.50000000e+02,   2.20803521e-03],
       [  6.60000000e+02,   1.96317141e-03],
       [  6.70000000e+02,   2.04429054e-03],
       [  6.80000000e+02,   2.12295516e-03],
       [  6.90000000e+02,   2.10759323e-03],
       [  7.00000000e+02,   2.22412962e-03],
       [  7.10000000e+02,   1.64359505e-03],
       [  7.20000000e+02,   1.77184003e-03],
       [  7.30000000e+02,   2.17923173e-03],
       [  7.40000000e+02,   1.66724506e-03],
       [  7.50000000e+02,   1.96217862e-03],
       [  7.60000000e+02,   2.06538267e-03],
       [  7.70000000e+02,   2.08564755e-03],
       [  7.80000000e+02,   1.85470982e-03],
       [  7.90000000e+02,   1.70560169e-03],
       [  8.00000000e+02,   1.67183892e-03],
       [  8.10000000e+02,   1.54415308e-03],
       [  8.20000000e+02,   1.74338848e-03],
       [  8.30000000e+02,   1.82914222e-03],
       [  8.40000000e+02,   1.51423726e-03],
       [  8.50000000e+02,   1.48499699e-03],
       [  8.60000000e+02,   1.66884821e-03],
       [  8.70000000e+02,   1.73181831e-03],
       [  8.80000000e+02,   1.98295061e-03],
       [  8.90000000e+02,   1.32101239e-03],
       [  9.00000000e+02,   1.91342575e-03],
       [  9.10000000e+02,   1.48970960e-03],
       [  9.20000000e+02,   1.51454227e-03],
       [  9.30000000e+02,   1.49595540e-03],
       [  9.40000000e+02,   1.53640925e-03],
       [  9.50000000e+02,   1.62155693e-03],
       [  9.60000000e+02,   1.43512338e-03],
       [  9.70000000e+02,   1.47841638e-03],
       [  9.80000000e+02,   1.72740791e-03],
       [  9.90000000e+02,   1.66376506e-03],
       [  1.00000000e+03,   1.66514784e-03],
       [  1.01000000e+03,   1.35349890e-03],
       [  1.02000000e+03,   1.70378876e-03],
       [  1.03000000e+03,   1.27725897e-03],
       [  1.04000000e+03,   1.37980795e-03],
       [  1.05000000e+03,   1.24301843e-03],
       [  1.06000000e+03,   1.60062173e-03],
       [  1.07000000e+03,   1.35618006e-03],
       [  1.08000000e+03,   1.22934836e-03],
       [  1.09000000e+03,   1.49137015e-03],
       [  1.10000000e+03,   1.45851437e-03],
       [  1.11000000e+03,   1.34679675e-03],
       [  1.12000000e+03,   1.49470568e-03],
       [  1.13000000e+03,   1.40944438e-03],
       [  1.14000000e+03,   1.25473586e-03],
       [  1.15000000e+03,   1.09636795e-03],
       [  1.16000000e+03,   1.13008905e-03],
       [  1.17000000e+03,   1.19094318e-03],
       [  1.18000000e+03,   1.24183018e-03],
       [  1.19000000e+03,   1.34487834e-03],
       [  1.20000000e+03,   1.33725081e-03],
       [  1.21000000e+03,   1.18475361e-03],
       [  1.22000000e+03,   1.23808428e-03],
       [  1.23000000e+03,   1.23981433e-03],
       [  1.24000000e+03,   1.08027854e-03],
       [  1.25000000e+03,   1.26340892e-03],
       [  1.26000000e+03,   1.26421195e-03],
       [  1.27000000e+03,   1.15914049e-03],
       [  1.28000000e+03,   1.20796671e-03],
       [  1.29000000e+03,   1.45062362e-03],
       [  1.30000000e+03,   1.23071519e-03],
       [  1.31000000e+03,   1.08421291e-03],
       [  1.32000000e+03,   1.22234039e-03],
       [  1.33000000e+03,   7.76520988e-04],
       [  1.34000000e+03,   9.57602053e-04],
       [  1.35000000e+03,   1.23155920e-03],
       [  1.36000000e+03,   1.06812327e-03],
       [  1.37000000e+03,   1.06417050e-03],
       [  1.38000000e+03,   8.57682200e-04],
       [  1.39000000e+03,   9.48817702e-04],
       [  1.40000000e+03,   9.21793340e-04],
       [  1.41000000e+03,   1.00959733e-03],
       [  1.42000000e+03,   1.22030149e-03],
       [  1.43000000e+03,   1.03361229e-03],
       [  1.44000000e+03,   1.03932025e-03],
       [  1.45000000e+03,   9.33245581e-04],
       [  1.46000000e+03,   1.07238698e-03],
       [  1.47000000e+03,   1.04467419e-03],
       [  1.48000000e+03,   9.10848554e-04],
       [  1.49000000e+03,   1.03442254e-03],
       [  1.50000000e+03,   1.01821963e-03],
       [  1.51000000e+03,   1.02157961e-03],
       [  1.52000000e+03,   1.06270995e-03],
       [  1.53000000e+03,   9.35602351e-04],
       [  1.54000000e+03,   9.83089209e-04],
       [  1.55000000e+03,   1.01950683e-03],
       [  1.56000000e+03,   9.13246127e-04],
       [  1.57000000e+03,   8.99084494e-04],
       [  1.58000000e+03,   1.01720507e-03],
       [  1.59000000e+03,   1.00712280e-03],
       [  1.60000000e+03,   9.26661480e-04],
       [  1.61000000e+03,   9.77701042e-04],
       [  1.62000000e+03,   7.82199146e-04],
       [  1.63000000e+03,   9.94807575e-04],
       [  1.64000000e+03,   8.09351273e-04],
       [  1.65000000e+03,   6.83782389e-04],
       [  1.66000000e+03,   8.43601360e-04],
       [  1.67000000e+03,   8.85169080e-04],
       [  1.68000000e+03,   8.01701681e-04],
       [  1.69000000e+03,   8.46941897e-04],
       [  1.70000000e+03,   9.14356264e-04],
       [  1.71000000e+03,   9.59969359e-04],
       [  1.72000000e+03,   9.27104382e-04],
       [  1.73000000e+03,   8.82089371e-04],
       [  1.74000000e+03,   8.67193914e-04],
       [  1.75000000e+03,   7.31891312e-04],
       [  1.76000000e+03,   8.92537821e-04],
       [  1.77000000e+03,   8.96424812e-04],
       [  1.78000000e+03,   8.32971360e-04],
       [  1.79000000e+03,   6.07229304e-04],
       [  1.80000000e+03,   7.79807800e-04],
       [  1.81000000e+03,   8.04992334e-04],
       [  1.82000000e+03,   7.75278779e-04],
       [  1.83000000e+03,   8.48606520e-04],
       [  1.84000000e+03,   7.40759075e-04],
       [  1.85000000e+03,   8.33616825e-04],
       [  1.86000000e+03,   8.40267166e-04],
       [  1.87000000e+03,   7.99061207e-04],
       [  1.88000000e+03,   6.95234339e-04],
       [  1.89000000e+03,   7.04594713e-04],
       [  1.90000000e+03,   8.34880047e-04],
       [  1.91000000e+03,   7.63384975e-04],
       [  1.92000000e+03,   7.22553639e-04],
       [  1.93000000e+03,   7.06191815e-04],
       [  1.94000000e+03,   7.08701322e-04],
       [  1.95000000e+03,   7.28812360e-04],
       [  1.96000000e+03,   7.89843732e-04],
       [  1.97000000e+03,   7.11146742e-04],
       [  1.98000000e+03,   7.94613909e-04],
       [  1.99000000e+03,   7.46949925e-04],
       [  2.00000000e+03,   7.93254992e-04]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x105f1b8d0>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x105eec240>

In [ ]: