In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.5,
 'length_of_sequences': 50,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([ -2.89351046e-02,   4.70549762e-02,   8.91841352e-02,
         9.56257880e-02,   6.58415854e-02,  -9.80496407e-06,
        -1.00909412e-01,  -2.33765915e-01,  -3.91262800e-01,
        -5.60204148e-01,  -7.23248959e-01,  -8.65128160e-01,
        -9.78696465e-01,  -1.06517673e+00,  -1.12993598e+00,
        -1.17871284e+00,  -1.21608496e+00,  -1.24531591e+00,
        -1.26863873e+00,  -1.28756928e+00,  -1.30314612e+00,
        -1.31609678e+00,  -1.32694495e+00,  -1.33607936e+00,
        -1.34379745e+00,  -1.35033393e+00,  -1.35587716e+00,
        -1.36058152e+00,  -1.36457598e+00,  -1.36796820e+00,
        -1.37084889e+00,  -1.37329483e+00,  -1.37537158e+00,
        -1.37713468e+00,  -1.37863076e+00,  -1.37990046e+00,
        -1.38097787e+00,  -1.38189173e+00,  -1.38266718e+00,
        -1.38332486e+00,  -1.38388264e+00,  -1.38435566e+00,
        -1.38475668e+00,  -1.38509679e+00,  -1.38538527e+00,
        -1.38562977e+00,  -1.38583720e+00,  -1.38601303e+00,
        -1.38616204e+00,  -1.38628852e+00,  -1.38639545e+00,
        -1.38648617e+00,  -1.38656342e+00,  -1.38662851e+00,
        -1.38668382e+00,  -1.38673079e+00,  -1.38677061e+00,
        -1.38680422e+00,  -1.38683283e+00,  -1.38685703e+00,
        -1.38687766e+00,  -1.38689494e+00,  -1.38690972e+00,
        -1.38692224e+00,  -1.38693273e+00,  -1.38694191e+00,
        -1.38694942e+00,  -1.38695586e+00,  -1.38696134e+00,
        -1.38696587e+00,  -1.38696969e+00,  -1.38697302e+00,
        -1.38697577e+00,  -1.38697827e+00,  -1.38698018e+00,
        -1.38698196e+00,  -1.38698339e+00,  -1.38698471e+00,
        -1.38698566e+00,  -1.38698661e+00,  -1.38698733e+00,
        -1.38698792e+00,  -1.38698852e+00,  -1.38698924e+00,
        -1.38698947e+00,  -1.38698995e+00,  -1.38699007e+00,
        -1.38699031e+00,  -1.38699043e+00,  -1.38699067e+00,
        -1.38699090e+00,  -1.38699102e+00,  -1.38699126e+00,
        -1.38699138e+00,  -1.38699138e+00,  -1.38699150e+00,
        -1.38699162e+00,  -1.38699162e+00,  -1.38699150e+00,
        -1.38699162e+00])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   3.29082876e-01],
       [  2.00000000e+01,   8.61236155e-02],
       [  3.00000000e+01,   4.93995696e-02],
       [  4.00000000e+01,   5.12662940e-02],
       [  5.00000000e+01,   4.51714173e-02],
       [  6.00000000e+01,   2.12486554e-02],
       [  7.00000000e+01,   4.31775376e-02],
       [  8.00000000e+01,   5.81898540e-02],
       [  9.00000000e+01,   2.14595608e-02],
       [  1.00000000e+02,   1.15892859e-02],
       [  1.10000000e+02,   9.14667547e-03],
       [  1.20000000e+02,   7.12994561e-02],
       [  1.30000000e+02,   9.64986905e-03],
       [  1.40000000e+02,   6.87214686e-03],
       [  1.50000000e+02,   6.12145383e-03],
       [  1.60000000e+02,   6.25809794e-03],
       [  1.70000000e+02,   6.78430796e-02],
       [  1.80000000e+02,   2.18180101e-02],
       [  1.90000000e+02,   5.35034481e-03],
       [  2.00000000e+02,   5.17852791e-03],
       [  2.10000000e+02,   4.03791061e-03],
       [  2.20000000e+02,   3.38686979e-03],
       [  2.30000000e+02,   2.87548210e-02],
       [  2.40000000e+02,   2.48847418e-02],
       [  2.50000000e+02,   4.13393183e-03],
       [  2.60000000e+02,   2.90879677e-03],
       [  2.70000000e+02,   2.63714185e-03],
       [  2.80000000e+02,   2.62779230e-03],
       [  2.90000000e+02,   2.83988216e-03],
       [  3.00000000e+02,   3.37786670e-03],
       [  3.10000000e+02,   3.47137894e-03],
       [  3.20000000e+02,   4.37675277e-03],
       [  3.30000000e+02,   1.05746724e-02],
       [  3.40000000e+02,   4.16547805e-02],
       [  3.50000000e+02,   3.62072373e-03],
       [  3.60000000e+02,   3.88795254e-03],
       [  3.70000000e+02,   2.38357717e-03],
       [  3.80000000e+02,   3.73674370e-03],
       [  3.90000000e+02,   4.93265549e-03],
       [  4.00000000e+02,   6.38453010e-03],
       [  4.10000000e+02,   1.72910723e-03],
       [  4.20000000e+02,   1.84115139e-03],
       [  4.30000000e+02,   2.08979007e-03],
       [  4.40000000e+02,   1.32999604e-03],
       [  4.50000000e+02,   1.61635608e-03],
       [  4.60000000e+02,   1.09612208e-03],
       [  4.70000000e+02,   1.38378679e-03],
       [  4.80000000e+02,   1.83142349e-03],
       [  4.90000000e+02,   2.25510169e-03],
       [  5.00000000e+02,   1.95748135e-02],
       [  5.10000000e+02,   1.39374016e-02],
       [  5.20000000e+02,   5.30189276e-03],
       [  5.30000000e+02,   4.90416866e-03],
       [  5.40000000e+02,   4.96186502e-03],
       [  5.50000000e+02,   2.17752461e-03],
       [  5.60000000e+02,   1.18150190e-03],
       [  5.70000000e+02,   9.32271476e-04],
       [  5.80000000e+02,   9.45433392e-04],
       [  5.90000000e+02,   8.78541614e-04],
       [  6.00000000e+02,   8.57671665e-04],
       [  6.10000000e+02,   2.78549921e-03],
       [  6.20000000e+02,   6.73760055e-03],
       [  6.30000000e+02,   1.00567648e-02],
       [  6.40000000e+02,   3.94475507e-03],
       [  6.50000000e+02,   1.50588749e-03],
       [  6.60000000e+02,   6.69506658e-03],
       [  6.70000000e+02,   5.26860543e-03],
       [  6.80000000e+02,   3.93547816e-03],
       [  6.90000000e+02,   2.15574214e-03],
       [  7.00000000e+02,   1.74959470e-03],
       [  7.10000000e+02,   7.99782923e-04],
       [  7.20000000e+02,   8.05387623e-04],
       [  7.30000000e+02,   8.04517127e-04],
       [  7.40000000e+02,   1.15450041e-03],
       [  7.50000000e+02,   2.69657699e-03],
       [  7.60000000e+02,   5.23904897e-03],
       [  7.70000000e+02,   4.05439781e-03],
       [  7.80000000e+02,   1.28805160e-03],
       [  7.90000000e+02,   6.51382608e-04],
       [  8.00000000e+02,   1.78131205e-03],
       [  8.10000000e+02,   2.73370440e-03],
       [  8.20000000e+02,   3.87497549e-03],
       [  8.30000000e+02,   2.48506735e-03],
       [  8.40000000e+02,   1.19281409e-03],
       [  8.50000000e+02,   8.84005742e-04],
       [  8.60000000e+02,   8.09002086e-04],
       [  8.70000000e+02,   5.18891611e-04],
       [  8.80000000e+02,   4.85806755e-04],
       [  8.90000000e+02,   4.22566605e-04],
       [  9.00000000e+02,   4.99748276e-04],
       [  9.10000000e+02,   6.73349190e-04],
       [  9.20000000e+02,   1.36621529e-03],
       [  9.30000000e+02,   2.34906259e-03],
       [  9.40000000e+02,   1.24414521e-03],
       [  9.50000000e+02,   1.06996275e-03],
       [  9.60000000e+02,   1.35857519e-03],
       [  9.70000000e+02,   1.77227485e-03],
       [  9.80000000e+02,   2.41312268e-03],
       [  9.90000000e+02,   1.39880809e-03],
       [  1.00000000e+03,   5.02648298e-04],
       [  1.01000000e+03,   7.64668162e-04],
       [  1.02000000e+03,   5.95820195e-04],
       [  1.03000000e+03,   7.06674007e-04],
       [  1.04000000e+03,   7.95079221e-04],
       [  1.05000000e+03,   9.49726906e-04],
       [  1.06000000e+03,   3.97022907e-03],
       [  1.07000000e+03,   6.18674094e-03],
       [  1.08000000e+03,   6.04170840e-03],
       [  1.09000000e+03,   3.10690980e-03],
       [  1.10000000e+03,   5.32673346e-03],
       [  1.11000000e+03,   2.84368475e-03],
       [  1.12000000e+03,   9.32524679e-04],
       [  1.13000000e+03,   8.73287034e-04],
       [  1.14000000e+03,   6.60641876e-04],
       [  1.15000000e+03,   5.34390216e-04],
       [  1.16000000e+03,   4.43657191e-04],
       [  1.17000000e+03,   3.87384964e-04],
       [  1.18000000e+03,   2.25938018e-03],
       [  1.19000000e+03,   1.27379061e-03],
       [  1.20000000e+03,   2.47914763e-03],
       [  1.21000000e+03,   1.28297147e-03],
       [  1.22000000e+03,   2.05471879e-03],
       [  1.23000000e+03,   7.87216588e-04],
       [  1.24000000e+03,   5.13212522e-04],
       [  1.25000000e+03,   4.85832541e-04],
       [  1.26000000e+03,   3.22945038e-04],
       [  1.27000000e+03,   3.17915779e-04],
       [  1.28000000e+03,   3.07918817e-04],
       [  1.29000000e+03,   6.63624727e-04],
       [  1.30000000e+03,   4.35431517e-04],
       [  1.31000000e+03,   9.13535361e-04],
       [  1.32000000e+03,   1.24266755e-03],
       [  1.33000000e+03,   3.25635914e-03],
       [  1.34000000e+03,   2.28239223e-03],
       [  1.35000000e+03,   2.69141677e-03],
       [  1.36000000e+03,   3.67952767e-03],
       [  1.37000000e+03,   6.70912862e-03],
       [  1.38000000e+03,   1.84378889e-03],
       [  1.39000000e+03,   1.00554409e-03],
       [  1.40000000e+03,   1.36158557e-03],
       [  1.41000000e+03,   1.47539051e-03],
       [  1.42000000e+03,   2.25596465e-04],
       [  1.43000000e+03,   2.67873751e-04],
       [  1.44000000e+03,   6.82484359e-04],
       [  1.45000000e+03,   1.77705975e-03],
       [  1.46000000e+03,   1.33512553e-03],
       [  1.47000000e+03,   6.82436395e-04],
       [  1.48000000e+03,   3.11202952e-04],
       [  1.49000000e+03,   3.72188981e-04],
       [  1.50000000e+03,   3.27757938e-04],
       [  1.51000000e+03,   2.86106253e-04],
       [  1.52000000e+03,   2.39151268e-04],
       [  1.53000000e+03,   3.62463150e-04],
       [  1.54000000e+03,   8.88126495e-04],
       [  1.55000000e+03,   1.00624014e-03],
       [  1.56000000e+03,   9.95489885e-04],
       [  1.57000000e+03,   1.19497138e-03],
       [  1.58000000e+03,   5.23035240e-04],
       [  1.59000000e+03,   2.90645577e-04],
       [  1.60000000e+03,   7.08664651e-04],
       [  1.61000000e+03,   1.00172963e-03],
       [  1.62000000e+03,   1.47847156e-03],
       [  1.63000000e+03,   1.65125134e-03],
       [  1.64000000e+03,   2.42329366e-03],
       [  1.65000000e+03,   5.48125617e-03],
       [  1.66000000e+03,   2.81687174e-03],
       [  1.67000000e+03,   1.20629359e-03],
       [  1.68000000e+03,   6.10824616e-04],
       [  1.69000000e+03,   4.52381530e-04],
       [  1.70000000e+03,   2.96841870e-04],
       [  1.71000000e+03,   4.06084408e-04],
       [  1.72000000e+03,   2.04487529e-04],
       [  1.73000000e+03,   1.91571671e-04],
       [  1.74000000e+03,   2.23557799e-04],
       [  1.75000000e+03,   1.87395679e-04],
       [  1.76000000e+03,   4.89564147e-04],
       [  1.77000000e+03,   6.82698737e-04],
       [  1.78000000e+03,   3.05149268e-04],
       [  1.79000000e+03,   6.92200672e-04],
       [  1.80000000e+03,   2.63523863e-04],
       [  1.81000000e+03,   3.46253597e-04],
       [  1.82000000e+03,   4.29725536e-04],
       [  1.83000000e+03,   1.92100517e-04],
       [  1.84000000e+03,   3.23592045e-04],
       [  1.85000000e+03,   3.50364629e-04],
       [  1.86000000e+03,   5.40185894e-04],
       [  1.87000000e+03,   4.39441268e-04],
       [  1.88000000e+03,   9.04918707e-04],
       [  1.89000000e+03,   7.30265398e-04],
       [  1.90000000e+03,   5.43148722e-04],
       [  1.91000000e+03,   5.62248752e-04],
       [  1.92000000e+03,   5.28857112e-04],
       [  1.93000000e+03,   3.82640428e-04],
       [  1.94000000e+03,   1.18241040e-03],
       [  1.95000000e+03,   1.06256397e-03],
       [  1.96000000e+03,   1.60182838e-03],
       [  1.97000000e+03,   5.51682059e-03],
       [  1.98000000e+03,   7.66568445e-03],
       [  1.99000000e+03,   2.95509677e-03],
       [  2.00000000e+03,   1.39434461e-03]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x10fe909b0>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x10fe01780>

In [ ]: