In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.02,
 'length_of_sequences': 50,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([-0.09543324, -0.06062651, -0.03316562, -0.01280821,  0.00210615,
        0.01298707,  0.02095232,  0.02684927,  0.03130194,  0.03476161,
        0.03755079,  0.03989857,  0.04196724,  0.04387192,  0.04569472,
        0.04749483,  0.04931542,  0.05118895,  0.05314033,  0.05518964,
        0.05735358,  0.0596468 ,  0.06208278,  0.06467434,  0.06743403,
        0.07037447,  0.07350861,  0.07684982,  0.08041193,  0.08420961,
        0.0882581 ,  0.09257342,  0.09717241,  0.10207273,  0.10729285,
        0.11285202,  0.11877032,  0.12506846,  0.13176787,  0.13889049,
        0.14645866,  0.1544949 ,  0.16302176,  0.17206141,  0.18163542,
        0.19176415,  0.20246631,  0.21375853,  0.22565451,  0.23816422,
        0.25129312,  0.26504138,  0.27940261,  0.29436323,  0.30990121,
        0.32598549,  0.34257519,  0.35961902,  0.37705529,  0.39481199,
        0.41280761,  0.43095213,  0.44914871,  0.46729577,  0.48528934,
        0.50302589,  0.52040505,  0.53733224,  0.55372131,  0.56949651,
        0.58459395,  0.59896296,  0.61256611,  0.62537903,  0.63738996,
        0.64859867,  0.65901494,  0.66865742,  0.67755157,  0.68572861,
        0.69322371,  0.70007521,  0.70632255,  0.71200639,  0.71716714,
        0.72184432,  0.72607636,  0.72990006,  0.73334992,  0.73645908,
        0.73925811,  0.74177569,  0.74403799,  0.74606949,  0.74789238,
        0.74952716,  0.75099254,  0.75230527,  0.75348091,  0.75453323])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   5.17859817e-01],
       [  2.00000000e+01,   4.98998046e-01],
       [  3.00000000e+01,   5.17539799e-01],
       [  4.00000000e+01,   5.33684254e-01],
       [  5.00000000e+01,   4.50120538e-01],
       [  6.00000000e+01,   4.66546029e-01],
       [  7.00000000e+01,   5.05139887e-01],
       [  8.00000000e+01,   4.55322713e-01],
       [  9.00000000e+01,   4.42264915e-01],
       [  1.00000000e+02,   5.33956170e-01],
       [  1.10000000e+02,   5.00837803e-01],
       [  1.20000000e+02,   5.28975248e-01],
       [  1.30000000e+02,   5.35401702e-01],
       [  1.40000000e+02,   4.87327665e-01],
       [  1.50000000e+02,   4.23016965e-01],
       [  1.60000000e+02,   4.57310975e-01],
       [  1.70000000e+02,   4.68445003e-01],
       [  1.80000000e+02,   4.57484215e-01],
       [  1.90000000e+02,   4.08328593e-01],
       [  2.00000000e+02,   3.75749350e-01],
       [  2.10000000e+02,   3.98944020e-01],
       [  2.20000000e+02,   3.37599069e-01],
       [  2.30000000e+02,   3.64709496e-01],
       [  2.40000000e+02,   2.71187246e-01],
       [  2.50000000e+02,   2.51345515e-01],
       [  2.60000000e+02,   2.64558494e-01],
       [  2.70000000e+02,   2.21746430e-01],
       [  2.80000000e+02,   1.93782657e-01],
       [  2.90000000e+02,   1.87349617e-01],
       [  3.00000000e+02,   1.76416963e-01],
       [  3.10000000e+02,   1.41304001e-01],
       [  3.20000000e+02,   1.30974799e-01],
       [  3.30000000e+02,   1.18791178e-01],
       [  3.40000000e+02,   1.12017252e-01],
       [  3.50000000e+02,   1.02567978e-01],
       [  3.60000000e+02,   8.54820982e-02],
       [  3.70000000e+02,   8.04091617e-02],
       [  3.80000000e+02,   7.72179514e-02],
       [  3.90000000e+02,   6.63317889e-02],
       [  4.00000000e+02,   6.81277737e-02],
       [  4.10000000e+02,   7.29839429e-02],
       [  4.20000000e+02,   5.78701012e-02],
       [  4.30000000e+02,   6.36226907e-02],
       [  4.40000000e+02,   6.09040111e-02],
       [  4.50000000e+02,   6.05218075e-02],
       [  4.60000000e+02,   5.73993102e-02],
       [  4.70000000e+02,   5.35745509e-02],
       [  4.80000000e+02,   5.15523143e-02],
       [  4.90000000e+02,   4.79386561e-02],
       [  5.00000000e+02,   5.05429320e-02],
       [  5.10000000e+02,   4.91594411e-02],
       [  5.20000000e+02,   4.91954088e-02],
       [  5.30000000e+02,   4.47381511e-02],
       [  5.40000000e+02,   5.06808050e-02],
       [  5.50000000e+02,   4.23950665e-02],
       [  5.60000000e+02,   3.71910036e-02],
       [  5.70000000e+02,   4.46714051e-02],
       [  5.80000000e+02,   4.08655629e-02],
       [  5.90000000e+02,   4.09289896e-02],
       [  6.00000000e+02,   3.61069068e-02],
       [  6.10000000e+02,   3.81100364e-02],
       [  6.20000000e+02,   3.78715843e-02],
       [  6.30000000e+02,   3.78756300e-02],
       [  6.40000000e+02,   3.59824747e-02],
       [  6.50000000e+02,   3.92697901e-02],
       [  6.60000000e+02,   3.34591568e-02],
       [  6.70000000e+02,   3.74063626e-02],
       [  6.80000000e+02,   3.41914445e-02],
       [  6.90000000e+02,   3.70244682e-02],
       [  7.00000000e+02,   3.09089608e-02],
       [  7.10000000e+02,   2.93999966e-02],
       [  7.20000000e+02,   3.22674774e-02],
       [  7.30000000e+02,   3.28461677e-02],
       [  7.40000000e+02,   2.80348882e-02],
       [  7.50000000e+02,   3.10689788e-02],
       [  7.60000000e+02,   2.76543181e-02],
       [  7.70000000e+02,   2.90908907e-02],
       [  7.80000000e+02,   2.68693343e-02],
       [  7.90000000e+02,   3.13737765e-02],
       [  8.00000000e+02,   3.01977824e-02],
       [  8.10000000e+02,   3.01491395e-02],
       [  8.20000000e+02,   2.72558220e-02],
       [  8.30000000e+02,   2.35948507e-02],
       [  8.40000000e+02,   2.95558739e-02],
       [  8.50000000e+02,   2.38943808e-02],
       [  8.60000000e+02,   2.70705745e-02],
       [  8.70000000e+02,   2.59567164e-02],
       [  8.80000000e+02,   2.44831219e-02],
       [  8.90000000e+02,   2.65099239e-02],
       [  9.00000000e+02,   2.34903544e-02],
       [  9.10000000e+02,   2.39725038e-02],
       [  9.20000000e+02,   2.44069807e-02],
       [  9.30000000e+02,   2.67997161e-02],
       [  9.40000000e+02,   2.28764098e-02],
       [  9.50000000e+02,   2.11875495e-02],
       [  9.60000000e+02,   2.08958201e-02],
       [  9.70000000e+02,   2.31778137e-02],
       [  9.80000000e+02,   2.31511835e-02],
       [  9.90000000e+02,   2.01585628e-02],
       [  1.00000000e+03,   2.30377223e-02],
       [  1.01000000e+03,   2.03283932e-02],
       [  1.02000000e+03,   1.97151657e-02],
       [  1.03000000e+03,   1.86410733e-02],
       [  1.04000000e+03,   2.27146503e-02],
       [  1.05000000e+03,   2.38351244e-02],
       [  1.06000000e+03,   1.81305818e-02],
       [  1.07000000e+03,   1.96415894e-02],
       [  1.08000000e+03,   2.07977481e-02],
       [  1.09000000e+03,   1.99295487e-02],
       [  1.10000000e+03,   1.84272658e-02],
       [  1.11000000e+03,   2.12104600e-02],
       [  1.12000000e+03,   1.74766257e-02],
       [  1.13000000e+03,   1.93148535e-02],
       [  1.14000000e+03,   1.70696788e-02],
       [  1.15000000e+03,   1.77788325e-02],
       [  1.16000000e+03,   1.70950405e-02],
       [  1.17000000e+03,   1.87355001e-02],
       [  1.18000000e+03,   1.90025978e-02],
       [  1.19000000e+03,   1.79176908e-02],
       [  1.20000000e+03,   1.68702286e-02],
       [  1.21000000e+03,   1.63305420e-02],
       [  1.22000000e+03,   1.66777819e-02],
       [  1.23000000e+03,   1.66886039e-02],
       [  1.24000000e+03,   1.66538712e-02],
       [  1.25000000e+03,   1.67828854e-02],
       [  1.26000000e+03,   1.49708334e-02],
       [  1.27000000e+03,   1.66316107e-02],
       [  1.28000000e+03,   1.41832912e-02],
       [  1.29000000e+03,   1.61960535e-02],
       [  1.30000000e+03,   1.54079655e-02],
       [  1.31000000e+03,   1.59229729e-02],
       [  1.32000000e+03,   1.43228360e-02],
       [  1.33000000e+03,   1.43423248e-02],
       [  1.34000000e+03,   1.58582684e-02],
       [  1.35000000e+03,   1.53038381e-02],
       [  1.36000000e+03,   1.30197909e-02],
       [  1.37000000e+03,   1.28818275e-02],
       [  1.38000000e+03,   1.44328317e-02],
       [  1.39000000e+03,   1.42328823e-02],
       [  1.40000000e+03,   1.46151092e-02],
       [  1.41000000e+03,   1.58220306e-02],
       [  1.42000000e+03,   1.42635154e-02],
       [  1.43000000e+03,   1.30550573e-02],
       [  1.44000000e+03,   1.47180595e-02],
       [  1.45000000e+03,   1.41027831e-02],
       [  1.46000000e+03,   1.39672421e-02],
       [  1.47000000e+03,   1.32001350e-02],
       [  1.48000000e+03,   1.21397497e-02],
       [  1.49000000e+03,   1.31679084e-02],
       [  1.50000000e+03,   1.14337495e-02],
       [  1.51000000e+03,   1.18541168e-02],
       [  1.52000000e+03,   1.28194140e-02],
       [  1.53000000e+03,   1.28950002e-02],
       [  1.54000000e+03,   1.25990808e-02],
       [  1.55000000e+03,   1.23996986e-02],
       [  1.56000000e+03,   1.20278625e-02],
       [  1.57000000e+03,   1.17429821e-02],
       [  1.58000000e+03,   1.13942139e-02],
       [  1.59000000e+03,   1.08894408e-02],
       [  1.60000000e+03,   1.32966591e-02],
       [  1.61000000e+03,   1.36806490e-02],
       [  1.62000000e+03,   1.07701560e-02],
       [  1.63000000e+03,   1.09960940e-02],
       [  1.64000000e+03,   1.21318670e-02],
       [  1.65000000e+03,   1.02160964e-02],
       [  1.66000000e+03,   9.66790225e-03],
       [  1.67000000e+03,   1.11636901e-02],
       [  1.68000000e+03,   1.07182637e-02],
       [  1.69000000e+03,   1.03527093e-02],
       [  1.70000000e+03,   1.08238189e-02],
       [  1.71000000e+03,   9.85411927e-03],
       [  1.72000000e+03,   1.07999323e-02],
       [  1.73000000e+03,   1.08791664e-02],
       [  1.74000000e+03,   9.16867703e-03],
       [  1.75000000e+03,   1.05869761e-02],
       [  1.76000000e+03,   9.78048705e-03],
       [  1.77000000e+03,   1.04347467e-02],
       [  1.78000000e+03,   1.05488654e-02],
       [  1.79000000e+03,   1.02532366e-02],
       [  1.80000000e+03,   9.21108946e-03],
       [  1.81000000e+03,   9.53976624e-03],
       [  1.82000000e+03,   8.72293580e-03],
       [  1.83000000e+03,   8.77364539e-03],
       [  1.84000000e+03,   8.85140803e-03],
       [  1.85000000e+03,   9.62420274e-03],
       [  1.86000000e+03,   7.60515500e-03],
       [  1.87000000e+03,   8.91204365e-03],
       [  1.88000000e+03,   8.45636427e-03],
       [  1.89000000e+03,   9.03903600e-03],
       [  1.90000000e+03,   9.32669640e-03],
       [  1.91000000e+03,   8.61874130e-03],
       [  1.92000000e+03,   7.98130129e-03],
       [  1.93000000e+03,   9.29717906e-03],
       [  1.94000000e+03,   8.17752443e-03],
       [  1.95000000e+03,   8.42652470e-03],
       [  1.96000000e+03,   8.42485763e-03],
       [  1.97000000e+03,   7.93940481e-03],
       [  1.98000000e+03,   7.88308959e-03],
       [  1.99000000e+03,   7.14018242e-03],
       [  2.00000000e+03,   7.14133866e-03]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x111b51940>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x111b24780>

In [ ]: