In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.1,
 'length_of_sequences': 50,
 'num_of_hidden_nodes': 1,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([-0.08699846, -0.08564895, -0.08592695, -0.08634382, -0.08679795,
       -0.08728403, -0.08780378, -0.0883593 , -0.0889532 , -0.08958817,
       -0.09026688, -0.09099257, -0.09176815, -0.09259725, -0.09348339,
       -0.09443063, -0.09544307, -0.09652513, -0.09768158, -0.09891766,
       -0.10023862, -0.10165018, -0.10315853, -0.10477018, -0.10649228,
       -0.10833204, -0.11029744, -0.11239684, -0.1146391 , -0.11703384,
       -0.11959106, -0.12232155, -0.12523651, -0.12834799, -0.13166851,
       -0.13521147, -0.13899118, -0.14302218, -0.14732033, -0.15190184,
       -0.1567837 , -0.16198361, -0.16752017, -0.17341238, -0.17967987,
       -0.18634254, -0.19342071, -0.20093477, -0.20890528, -0.21735206,
       -0.22629449, -0.23575097, -0.24573812, -0.256271  , -0.26736164,
       -0.27901921, -0.29124856, -0.30405   , -0.31741825, -0.33134142,
       -0.3458004 , -0.36076787, -0.37620783, -0.39207509, -0.40831459,
       -0.42486191, -0.44164345, -0.45857722, -0.4755742 , -0.49253994,
       -0.5093767 , -0.52598572, -0.54227   , -0.55813694, -0.57350063,
       -0.58828437, -0.60242242, -0.61586124, -0.62856042, -0.64049268,
       -0.65164351, -0.66201049, -0.67160195, -0.68043566, -0.688537  ,
       -0.69593763, -0.70267385, -0.708785  , -0.71431243, -0.71929824,
       -0.72378427, -0.72781163, -0.73141998, -0.73464704, -0.73752838,
       -0.74009734, -0.74238485, -0.74441934, -0.74622697, -0.74783158])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   5.24970829e-01],
       [  2.00000000e+01,   5.02165854e-01],
       [  3.00000000e+01,   5.21976292e-01],
       [  4.00000000e+01,   5.39231241e-01],
       [  5.00000000e+01,   4.54001993e-01],
       [  6.00000000e+01,   4.74606544e-01],
       [  7.00000000e+01,   5.14866590e-01],
       [  8.00000000e+01,   4.63114232e-01],
       [  9.00000000e+01,   4.46319312e-01],
       [  1.00000000e+02,   5.51044106e-01],
       [  1.10000000e+02,   5.19893050e-01],
       [  1.20000000e+02,   5.52232981e-01],
       [  1.30000000e+02,   5.63150644e-01],
       [  1.40000000e+02,   5.12652874e-01],
       [  1.50000000e+02,   4.43862528e-01],
       [  1.60000000e+02,   4.54757333e-01],
       [  1.70000000e+02,   4.07229066e-01],
       [  1.80000000e+02,   2.94437885e-01],
       [  1.90000000e+02,   1.74438298e-01],
       [  2.00000000e+02,   1.17227241e-01],
       [  2.10000000e+02,   9.28259119e-02],
       [  2.20000000e+02,   8.57229009e-02],
       [  2.30000000e+02,   6.66624829e-02],
       [  2.40000000e+02,   6.39367551e-02],
       [  2.50000000e+02,   5.91579638e-02],
       [  2.60000000e+02,   4.92778495e-02],
       [  2.70000000e+02,   5.05197495e-02],
       [  2.80000000e+02,   4.17561233e-02],
       [  2.90000000e+02,   3.70528586e-02],
       [  3.00000000e+02,   3.59562337e-02],
       [  3.10000000e+02,   3.15468274e-02],
       [  3.20000000e+02,   3.34122069e-02],
       [  3.30000000e+02,   2.83443686e-02],
       [  3.40000000e+02,   2.60360483e-02],
       [  3.50000000e+02,   2.84902528e-02],
       [  3.60000000e+02,   2.85529494e-02],
       [  3.70000000e+02,   2.33652610e-02],
       [  3.80000000e+02,   2.33212523e-02],
       [  3.90000000e+02,   2.07243487e-02],
       [  4.00000000e+02,   2.18675397e-02],
       [  4.10000000e+02,   2.17489339e-02],
       [  4.20000000e+02,   1.77957509e-02],
       [  4.30000000e+02,   1.96765903e-02],
       [  4.40000000e+02,   2.10537259e-02],
       [  4.50000000e+02,   2.25521345e-02],
       [  4.60000000e+02,   2.11623479e-02],
       [  4.70000000e+02,   1.88118778e-02],
       [  4.80000000e+02,   1.79973412e-02],
       [  4.90000000e+02,   1.72890909e-02],
       [  5.00000000e+02,   1.77539997e-02],
       [  5.10000000e+02,   1.64153595e-02],
       [  5.20000000e+02,   1.70677919e-02],
       [  5.30000000e+02,   1.59268826e-02],
       [  5.40000000e+02,   1.71308592e-02],
       [  5.50000000e+02,   1.46934977e-02],
       [  5.60000000e+02,   1.35738086e-02],
       [  5.70000000e+02,   1.59684848e-02],
       [  5.80000000e+02,   1.37811629e-02],
       [  5.90000000e+02,   1.39221642e-02],
       [  6.00000000e+02,   1.33097507e-02],
       [  6.10000000e+02,   1.35420905e-02],
       [  6.20000000e+02,   1.25878491e-02],
       [  6.30000000e+02,   1.44119551e-02],
       [  6.40000000e+02,   1.31819174e-02],
       [  6.50000000e+02,   1.35006523e-02],
       [  6.60000000e+02,   1.12969885e-02],
       [  6.70000000e+02,   1.33185461e-02],
       [  6.80000000e+02,   1.28194448e-02],
       [  6.90000000e+02,   1.24936672e-02],
       [  7.00000000e+02,   1.12930182e-02],
       [  7.10000000e+02,   1.07863583e-02],
       [  7.20000000e+02,   1.20906942e-02],
       [  7.30000000e+02,   1.29156755e-02],
       [  7.40000000e+02,   1.05140284e-02],
       [  7.50000000e+02,   1.13994172e-02],
       [  7.60000000e+02,   1.00526242e-02],
       [  7.70000000e+02,   1.07305478e-02],
       [  7.80000000e+02,   1.00358725e-02],
       [  7.90000000e+02,   1.20549370e-02],
       [  8.00000000e+02,   1.20779313e-02],
       [  8.10000000e+02,   1.12246787e-02],
       [  8.20000000e+02,   1.01809883e-02],
       [  8.30000000e+02,   8.49824212e-03],
       [  8.40000000e+02,   1.11759268e-02],
       [  8.50000000e+02,   9.27789137e-03],
       [  8.60000000e+02,   1.04088141e-02],
       [  8.70000000e+02,   9.83861461e-03],
       [  8.80000000e+02,   9.28709377e-03],
       [  8.90000000e+02,   1.02626048e-02],
       [  9.00000000e+02,   8.72140378e-03],
       [  9.10000000e+02,   8.94727930e-03],
       [  9.20000000e+02,   9.43389814e-03],
       [  9.30000000e+02,   1.00873765e-02],
       [  9.40000000e+02,   8.85191001e-03],
       [  9.50000000e+02,   8.38382449e-03],
       [  9.60000000e+02,   8.18282925e-03],
       [  9.70000000e+02,   9.31667164e-03],
       [  9.80000000e+02,   9.57918167e-03],
       [  9.90000000e+02,   8.18235893e-03],
       [  1.00000000e+03,   9.12148505e-03],
       [  1.01000000e+03,   7.68371066e-03],
       [  1.02000000e+03,   7.98046310e-03],
       [  1.03000000e+03,   7.17705023e-03],
       [  1.04000000e+03,   9.03674867e-03],
       [  1.05000000e+03,   9.42576490e-03],
       [  1.06000000e+03,   7.10476143e-03],
       [  1.07000000e+03,   8.26850906e-03],
       [  1.08000000e+03,   8.38900916e-03],
       [  1.09000000e+03,   8.07069242e-03],
       [  1.10000000e+03,   7.83216488e-03],
       [  1.11000000e+03,   8.82564113e-03],
       [  1.12000000e+03,   6.98517682e-03],
       [  1.13000000e+03,   7.92842824e-03],
       [  1.14000000e+03,   7.50246877e-03],
       [  1.15000000e+03,   7.10098725e-03],
       [  1.16000000e+03,   6.98447600e-03],
       [  1.17000000e+03,   7.86724500e-03],
       [  1.18000000e+03,   7.85678998e-03],
       [  1.19000000e+03,   7.57053122e-03],
       [  1.20000000e+03,   7.13722548e-03],
       [  1.21000000e+03,   6.64981408e-03],
       [  1.22000000e+03,   6.94719516e-03],
       [  1.23000000e+03,   6.89419266e-03],
       [  1.24000000e+03,   6.90645119e-03],
       [  1.25000000e+03,   7.21116411e-03],
       [  1.26000000e+03,   6.01117266e-03],
       [  1.27000000e+03,   7.26602506e-03],
       [  1.28000000e+03,   5.97099401e-03],
       [  1.29000000e+03,   6.89710630e-03],
       [  1.30000000e+03,   6.78111985e-03],
       [  1.31000000e+03,   6.99955598e-03],
       [  1.32000000e+03,   6.23831525e-03],
       [  1.33000000e+03,   6.14073174e-03],
       [  1.34000000e+03,   7.05319410e-03],
       [  1.35000000e+03,   6.66815741e-03],
       [  1.36000000e+03,   5.84342470e-03],
       [  1.37000000e+03,   5.81708178e-03],
       [  1.38000000e+03,   6.29056944e-03],
       [  1.39000000e+03,   6.51696790e-03],
       [  1.40000000e+03,   6.52175536e-03],
       [  1.41000000e+03,   7.33786216e-03],
       [  1.42000000e+03,   6.24056300e-03],
       [  1.43000000e+03,   5.86394500e-03],
       [  1.44000000e+03,   6.72449730e-03],
       [  1.45000000e+03,   6.59021363e-03],
       [  1.46000000e+03,   6.42565126e-03],
       [  1.47000000e+03,   6.11220906e-03],
       [  1.48000000e+03,   5.49821090e-03],
       [  1.49000000e+03,   6.15825364e-03],
       [  1.50000000e+03,   5.30183455e-03],
       [  1.51000000e+03,   5.44701889e-03],
       [  1.52000000e+03,   5.96840261e-03],
       [  1.53000000e+03,   5.84102143e-03],
       [  1.54000000e+03,   6.02063257e-03],
       [  1.55000000e+03,   5.79390302e-03],
       [  1.56000000e+03,   5.74832549e-03],
       [  1.57000000e+03,   5.62326051e-03],
       [  1.58000000e+03,   5.37041528e-03],
       [  1.59000000e+03,   5.27119264e-03],
       [  1.60000000e+03,   6.31239079e-03],
       [  1.61000000e+03,   6.53806468e-03],
       [  1.62000000e+03,   5.17426711e-03],
       [  1.63000000e+03,   5.30378940e-03],
       [  1.64000000e+03,   5.91227412e-03],
       [  1.65000000e+03,   5.02133137e-03],
       [  1.66000000e+03,   4.64896904e-03],
       [  1.67000000e+03,   5.38665522e-03],
       [  1.68000000e+03,   5.34902327e-03],
       [  1.69000000e+03,   5.29049756e-03],
       [  1.70000000e+03,   5.55971125e-03],
       [  1.71000000e+03,   4.92698513e-03],
       [  1.72000000e+03,   5.30393375e-03],
       [  1.73000000e+03,   5.52117778e-03],
       [  1.74000000e+03,   4.67033545e-03],
       [  1.75000000e+03,   5.63142588e-03],
       [  1.76000000e+03,   5.04138134e-03],
       [  1.77000000e+03,   5.51196700e-03],
       [  1.78000000e+03,   5.41979773e-03],
       [  1.79000000e+03,   5.46867587e-03],
       [  1.80000000e+03,   4.73293802e-03],
       [  1.81000000e+03,   5.09474752e-03],
       [  1.82000000e+03,   4.67019482e-03],
       [  1.83000000e+03,   4.77354927e-03],
       [  1.84000000e+03,   4.83772717e-03],
       [  1.85000000e+03,   5.21602295e-03],
       [  1.86000000e+03,   4.19009151e-03],
       [  1.87000000e+03,   4.83265892e-03],
       [  1.88000000e+03,   4.83431527e-03],
       [  1.89000000e+03,   5.14559634e-03],
       [  1.90000000e+03,   5.44076553e-03],
       [  1.91000000e+03,   4.79972782e-03],
       [  1.92000000e+03,   4.48630610e-03],
       [  1.93000000e+03,   5.33251604e-03],
       [  1.94000000e+03,   4.69741784e-03],
       [  1.95000000e+03,   4.89854254e-03],
       [  1.96000000e+03,   5.02321124e-03],
       [  1.97000000e+03,   4.91055287e-03],
       [  1.98000000e+03,   4.45442786e-03],
       [  1.99000000e+03,   4.23920760e-03],
       [  2.00000000e+03,   4.46196645e-03]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x106d09940>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x106cda6d8>

In [ ]: