In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 0.5,
 'learning_rate': 0.1,
 'length_of_sequences': 50,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([  4.47027385e-04,   1.17108338e-01,   2.30251670e-01,
         3.44309866e-01,   4.62224156e-01,   5.82834184e-01,
         6.99639857e-01,   8.02406967e-01,   8.81853759e-01,
         9.34016705e-01,   9.60573912e-01,   9.66085911e-01,
         9.55377340e-01,   9.32333410e-01,   8.99681330e-01,
         8.59148860e-01,   8.11690271e-01,   7.57677197e-01,
         6.97040677e-01,   6.29378736e-01,   5.54050684e-01,
         4.70283866e-01,   3.77321899e-01,   2.74645030e-01,
         1.62284791e-01,   4.12183143e-02,  -8.62487331e-02,
        -2.16302454e-01,  -3.43877077e-01,  -4.63438392e-01,
        -5.70064008e-01,  -6.60341144e-01,  -7.32696891e-01,
        -7.87137151e-01,  -8.24662685e-01,  -8.46658170e-01,
        -8.54425430e-01,  -8.48890603e-01,  -8.30449820e-01,
        -7.98910975e-01,  -7.53518403e-01,  -6.93098485e-01,
        -6.16424203e-01,  -5.22938490e-01,  -4.13844705e-01,
        -2.93101132e-01,  -1.67179495e-01,  -4.27327231e-02,
         7.66212270e-02,   1.91660523e-01,   3.06021839e-01,
         4.23157543e-01,   5.43386102e-01,   6.62011206e-01,
         7.69825578e-01,   8.56912732e-01,   9.17507887e-01,
         9.51714277e-01,   9.63439524e-01,   9.57544684e-01,
         9.38220620e-01,   9.08527970e-01,   8.70475888e-01,
         8.25237393e-01,   7.73351371e-01,   7.14877486e-01,
         6.49511933e-01,   5.76683640e-01,   4.95654643e-01,
         4.05652523e-01,   3.06066543e-01,   1.96731865e-01,
         7.83039927e-02,  -4.73416522e-02,  -1.76846027e-01,
        -3.05471718e-01,  -4.27732915e-01,  -5.38424850e-01,
        -6.33622706e-01,  -7.11201906e-01,  -7.70736039e-01,
        -8.12979221e-01,  -8.39240313e-01,  -8.50865841e-01,
        -8.48896682e-01,  -8.33877206e-01,  -8.05771291e-01,
        -7.63964772e-01,  -7.07373917e-01,  -6.34748578e-01,
        -5.45300007e-01,  -4.39722896e-01,  -3.21290255e-01,
        -1.96016163e-01,  -7.08003119e-02,   4.98086140e-02,
         1.65603936e-01,   2.79793292e-01,   3.96137863e-01,
         5.15884399e-01])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   5.19972384e-01],
       [  2.00000000e+01,   4.84594047e-01],
       [  3.00000000e+01,   4.31754231e-01],
       [  4.00000000e+01,   2.91183829e-01],
       [  5.00000000e+01,   1.59883291e-01],
       [  6.00000000e+01,   1.19944289e-01],
       [  7.00000000e+01,   1.10891543e-01],
       [  8.00000000e+01,   7.32138753e-02],
       [  9.00000000e+01,   6.60913959e-02],
       [  1.00000000e+02,   5.27235754e-02],
       [  1.10000000e+02,   4.76175882e-02],
       [  1.20000000e+02,   3.57141197e-02],
       [  1.30000000e+02,   3.40354331e-02],
       [  1.40000000e+02,   3.42466906e-02],
       [  1.50000000e+02,   2.89299320e-02],
       [  1.60000000e+02,   2.20293086e-02],
       [  1.70000000e+02,   2.17123367e-02],
       [  1.80000000e+02,   1.88611373e-02],
       [  1.90000000e+02,   1.58447903e-02],
       [  2.00000000e+02,   1.69601589e-02],
       [  2.10000000e+02,   1.23184538e-02],
       [  2.20000000e+02,   1.12765264e-02],
       [  2.30000000e+02,   1.02194306e-02],
       [  2.40000000e+02,   1.04287742e-02],
       [  2.50000000e+02,   9.18971561e-03],
       [  2.60000000e+02,   7.60088582e-03],
       [  2.70000000e+02,   8.30864534e-03],
       [  2.80000000e+02,   6.56462088e-03],
       [  2.90000000e+02,   7.62946717e-03],
       [  3.00000000e+02,   7.11589213e-03],
       [  3.10000000e+02,   7.03361025e-03],
       [  3.20000000e+02,   6.96505420e-03],
       [  3.30000000e+02,   5.50928339e-03],
       [  3.40000000e+02,   6.28835801e-03],
       [  3.50000000e+02,   5.37278783e-03],
       [  3.60000000e+02,   5.55724790e-03],
       [  3.70000000e+02,   5.60958032e-03],
       [  3.80000000e+02,   5.19300532e-03],
       [  3.90000000e+02,   5.00227977e-03],
       [  4.00000000e+02,   5.14815934e-03],
       [  4.10000000e+02,   5.45388833e-03],
       [  4.20000000e+02,   4.04982734e-03],
       [  4.30000000e+02,   4.31088172e-03],
       [  4.40000000e+02,   3.95551277e-03],
       [  4.50000000e+02,   4.18945495e-03],
       [  4.60000000e+02,   4.20944672e-03],
       [  4.70000000e+02,   4.22512833e-03],
       [  4.80000000e+02,   4.10925783e-03],
       [  4.90000000e+02,   3.82109522e-03],
       [  5.00000000e+02,   3.54857510e-03],
       [  5.10000000e+02,   3.45014501e-03],
       [  5.20000000e+02,   3.92137049e-03],
       [  5.30000000e+02,   3.54332058e-03],
       [  5.40000000e+02,   3.52483266e-03],
       [  5.50000000e+02,   3.71268508e-03],
       [  5.60000000e+02,   3.81398387e-03],
       [  5.70000000e+02,   3.37092346e-03],
       [  5.80000000e+02,   3.23068141e-03],
       [  5.90000000e+02,   3.05723632e-03],
       [  6.00000000e+02,   3.09739239e-03],
       [  6.10000000e+02,   3.05405864e-03],
       [  6.20000000e+02,   2.75547267e-03],
       [  6.30000000e+02,   2.74734269e-03],
       [  6.40000000e+02,   3.12585244e-03],
       [  6.50000000e+02,   2.63311062e-03],
       [  6.60000000e+02,   2.80843000e-03],
       [  6.70000000e+02,   2.63205892e-03],
       [  6.80000000e+02,   2.43320875e-03],
       [  6.90000000e+02,   2.34780554e-03],
       [  7.00000000e+02,   2.74989242e-03],
       [  7.10000000e+02,   2.65396060e-03],
       [  7.20000000e+02,   2.74958578e-03],
       [  7.30000000e+02,   2.42592976e-03],
       [  7.40000000e+02,   2.36124243e-03],
       [  7.50000000e+02,   2.24864809e-03],
       [  7.60000000e+02,   2.10958999e-03],
       [  7.70000000e+02,   2.21972098e-03],
       [  7.80000000e+02,   2.15565879e-03],
       [  7.90000000e+02,   1.94354681e-03],
       [  8.00000000e+02,   2.07208470e-03],
       [  8.10000000e+02,   1.79990556e-03],
       [  8.20000000e+02,   2.25264253e-03],
       [  8.30000000e+02,   1.98560115e-03],
       [  8.40000000e+02,   1.96959637e-03],
       [  8.50000000e+02,   2.04842980e-03],
       [  8.60000000e+02,   2.08693766e-03],
       [  8.70000000e+02,   1.76062819e-03],
       [  8.80000000e+02,   1.97233260e-03],
       [  8.90000000e+02,   1.81016466e-03],
       [  9.00000000e+02,   1.61202764e-03],
       [  9.10000000e+02,   1.84858113e-03],
       [  9.20000000e+02,   1.78748753e-03],
       [  9.30000000e+02,   1.61385362e-03],
       [  9.40000000e+02,   1.64857600e-03],
       [  9.50000000e+02,   1.92390149e-03],
       [  9.60000000e+02,   1.56112108e-03],
       [  9.70000000e+02,   1.38192112e-03],
       [  9.80000000e+02,   1.69730175e-03],
       [  9.90000000e+02,   1.73896889e-03],
       [  1.00000000e+03,   1.65245950e-03],
       [  1.01000000e+03,   1.59072550e-03],
       [  1.02000000e+03,   1.52913656e-03],
       [  1.03000000e+03,   1.45921006e-03],
       [  1.04000000e+03,   1.48828048e-03],
       [  1.05000000e+03,   1.32613082e-03],
       [  1.06000000e+03,   1.38734130e-03],
       [  1.07000000e+03,   1.59648329e-03],
       [  1.08000000e+03,   1.43139809e-03],
       [  1.09000000e+03,   1.16632087e-03],
       [  1.10000000e+03,   1.11266214e-03],
       [  1.11000000e+03,   1.36368419e-03],
       [  1.12000000e+03,   1.24186347e-03],
       [  1.13000000e+03,   1.34184596e-03],
       [  1.14000000e+03,   1.27591228e-03],
       [  1.15000000e+03,   1.33476185e-03],
       [  1.16000000e+03,   1.06631417e-03],
       [  1.17000000e+03,   1.25052663e-03],
       [  1.18000000e+03,   1.05845672e-03],
       [  1.19000000e+03,   1.07832963e-03],
       [  1.20000000e+03,   1.12250855e-03],
       [  1.21000000e+03,   1.15394918e-03],
       [  1.22000000e+03,   1.20069494e-03],
       [  1.23000000e+03,   1.17206899e-03],
       [  1.24000000e+03,   1.22067961e-03],
       [  1.25000000e+03,   1.00621721e-03],
       [  1.26000000e+03,   1.17754948e-03],
       [  1.27000000e+03,   1.19362981e-03],
       [  1.28000000e+03,   1.16673077e-03],
       [  1.29000000e+03,   9.96863702e-04],
       [  1.30000000e+03,   1.04247418e-03],
       [  1.31000000e+03,   9.48374858e-04],
       [  1.32000000e+03,   1.07050734e-03],
       [  1.33000000e+03,   1.03752105e-03],
       [  1.34000000e+03,   9.01732303e-04],
       [  1.35000000e+03,   8.20075918e-04],
       [  1.36000000e+03,   9.85170249e-04],
       [  1.37000000e+03,   9.01201158e-04],
       [  1.38000000e+03,   8.46857438e-04],
       [  1.39000000e+03,   7.35288486e-04],
       [  1.40000000e+03,   1.03285967e-03],
       [  1.41000000e+03,   7.58806302e-04],
       [  1.42000000e+03,   9.24832013e-04],
       [  1.43000000e+03,   9.23150044e-04],
       [  1.44000000e+03,   8.56927363e-04],
       [  1.45000000e+03,   8.28319462e-04],
       [  1.46000000e+03,   8.03563977e-04],
       [  1.47000000e+03,   7.60792056e-04],
       [  1.48000000e+03,   7.23982230e-04],
       [  1.49000000e+03,   7.47873506e-04],
       [  1.50000000e+03,   8.16523505e-04],
       [  1.51000000e+03,   7.36416667e-04],
       [  1.52000000e+03,   7.58749549e-04],
       [  1.53000000e+03,   8.08843062e-04],
       [  1.54000000e+03,   5.78560284e-04],
       [  1.55000000e+03,   8.03496223e-04],
       [  1.56000000e+03,   7.44468358e-04],
       [  1.57000000e+03,   7.07981410e-04],
       [  1.58000000e+03,   8.13164923e-04],
       [  1.59000000e+03,   7.53172033e-04],
       [  1.60000000e+03,   7.28907587e-04],
       [  1.61000000e+03,   6.68541936e-04],
       [  1.62000000e+03,   7.39133451e-04],
       [  1.63000000e+03,   6.18706807e-04],
       [  1.64000000e+03,   6.43873529e-04],
       [  1.65000000e+03,   6.35291799e-04],
       [  1.66000000e+03,   6.29352638e-04],
       [  1.67000000e+03,   7.09666638e-04],
       [  1.68000000e+03,   6.77118602e-04],
       [  1.69000000e+03,   5.98203740e-04],
       [  1.70000000e+03,   6.76085474e-04],
       [  1.71000000e+03,   6.47579145e-04],
       [  1.72000000e+03,   5.42760710e-04],
       [  1.73000000e+03,   5.62144269e-04],
       [  1.74000000e+03,   4.84195014e-04],
       [  1.75000000e+03,   5.36773121e-04],
       [  1.76000000e+03,   6.04955712e-04],
       [  1.77000000e+03,   5.70987409e-04],
       [  1.78000000e+03,   5.48467215e-04],
       [  1.79000000e+03,   5.25960233e-04],
       [  1.80000000e+03,   5.77939325e-04],
       [  1.81000000e+03,   5.13427309e-04],
       [  1.82000000e+03,   4.74517816e-04],
       [  1.83000000e+03,   5.00856084e-04],
       [  1.84000000e+03,   5.04093478e-04],
       [  1.85000000e+03,   5.83082961e-04],
       [  1.86000000e+03,   5.84273716e-04],
       [  1.87000000e+03,   4.83905198e-04],
       [  1.88000000e+03,   5.62584377e-04],
       [  1.89000000e+03,   5.43479226e-04],
       [  1.90000000e+03,   4.98149195e-04],
       [  1.91000000e+03,   4.98680281e-04],
       [  1.92000000e+03,   5.11123391e-04],
       [  1.93000000e+03,   5.12422412e-04],
       [  1.94000000e+03,   5.25712094e-04],
       [  1.95000000e+03,   4.36786941e-04],
       [  1.96000000e+03,   5.00558410e-04],
       [  1.97000000e+03,   4.37989191e-04],
       [  1.98000000e+03,   6.01494859e-04],
       [  1.99000000e+03,   4.37270093e-04],
       [  2.00000000e+03,   3.75968142e-04]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x1125ee908>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x1125c2a58>

In [ ]: