In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.1,
 'length_of_sequences': 50,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 3000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([-0.01163007,  0.11507505,  0.24011663,  0.3597368 ,  0.47010452,
        0.56773204,  0.64985275,  0.71461999,  0.76108688,  0.78901577,
        0.79862201,  0.79034865,  0.76473933,  0.72243309,  0.6642651 ,
        0.59141982,  0.5055337 ,  0.40864086,  0.3029201 ,  0.19036371,
        0.07259029, -0.04903597, -0.17303729, -0.2974163 , -0.41942739,
       -0.53565294, -0.6423946 , -0.73625678, -0.81470472, -0.87637764,
       -0.92107219, -0.94947195, -0.96278471, -0.96241534, -0.94973975,
       -0.92597461, -0.89212275, -0.84896779, -0.79709655, -0.73693907,
       -0.6688205 , -0.59302258, -0.50985676, -0.41975048, -0.32334602,
       -0.2216067 , -0.11591803, -0.00815967,  0.0992815 ,  0.20358637,
        0.3016789 ,  0.39047939,  0.46718192,  0.52948153,  0.57569683,
        0.60477555,  0.61621398,  0.60995072,  0.58629096,  0.5458895 ,
        0.48978436,  0.41942894,  0.33665282,  0.24351186,  0.14207268,
        0.03425908, -0.07812446, -0.19318894, -0.30869773, -0.42190981,
       -0.52964294, -0.62857759, -0.71570927, -0.78877628, -0.84650588,
       -0.88860476, -0.91555351, -0.92831635, -0.92806906, -0.91600031,
       -0.89318985, -0.86055166, -0.81882119, -0.76857066, -0.71024317,
       -0.64419866, -0.57077193, -0.49034059, -0.40340501, -0.31067899,
       -0.21318346, -0.11233169, -0.0099849 ,  0.0915475 ,  0.18958548,
        0.28123939,  0.36363411,  0.43414801,  0.49060851,  0.53140152])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   5.21649063e-01],
       [  2.00000000e+01,   4.98259187e-01],
       [  3.00000000e+01,   5.12061834e-01],
       [  4.00000000e+01,   5.08497775e-01],
       [  5.00000000e+01,   3.76984179e-01],
       [  6.00000000e+01,   2.86902398e-01],
       [  7.00000000e+01,   2.23010182e-01],
       [  8.00000000e+01,   1.33334279e-01],
       [  9.00000000e+01,   1.09339476e-01],
       [  1.00000000e+02,   7.91212395e-02],
       [  1.10000000e+02,   6.07259162e-02],
       [  1.20000000e+02,   4.49932814e-02],
       [  1.30000000e+02,   3.70537601e-02],
       [  1.40000000e+02,   3.04589123e-02],
       [  1.50000000e+02,   2.42561046e-02],
       [  1.60000000e+02,   1.85057689e-02],
       [  1.70000000e+02,   1.69574283e-02],
       [  1.80000000e+02,   1.47507051e-02],
       [  1.90000000e+02,   1.35333249e-02],
       [  2.00000000e+02,   1.27079748e-02],
       [  2.10000000e+02,   1.12369396e-02],
       [  2.20000000e+02,   9.53455735e-03],
       [  2.30000000e+02,   1.04534468e-02],
       [  2.40000000e+02,   1.02619873e-02],
       [  2.50000000e+02,   9.32639278e-03],
       [  2.60000000e+02,   7.47229438e-03],
       [  2.70000000e+02,   9.06517543e-03],
       [  2.80000000e+02,   8.19949247e-03],
       [  2.90000000e+02,   8.28112382e-03],
       [  3.00000000e+02,   7.72635685e-03],
       [  3.10000000e+02,   7.05221435e-03],
       [  3.20000000e+02,   7.11524952e-03],
       [  3.30000000e+02,   7.60497572e-03],
       [  3.40000000e+02,   6.73286011e-03],
       [  3.50000000e+02,   6.27701543e-03],
       [  3.60000000e+02,   5.88546973e-03],
       [  3.70000000e+02,   6.70004915e-03],
       [  3.80000000e+02,   6.44200901e-03],
       [  3.90000000e+02,   5.44016296e-03],
       [  4.00000000e+02,   5.65867312e-03],
       [  4.10000000e+02,   4.56129666e-03],
       [  4.20000000e+02,   4.52047028e-03],
       [  4.30000000e+02,   4.51974012e-03],
       [  4.40000000e+02,   4.70956787e-03],
       [  4.50000000e+02,   4.77563404e-03],
       [  4.60000000e+02,   4.65578865e-03],
       [  4.70000000e+02,   4.77874139e-03],
       [  4.80000000e+02,   4.48078616e-03],
       [  4.90000000e+02,   4.22816677e-03],
       [  5.00000000e+02,   4.62924642e-03],
       [  5.10000000e+02,   3.80018540e-03],
       [  5.20000000e+02,   4.21846611e-03],
       [  5.30000000e+02,   3.91929084e-03],
       [  5.40000000e+02,   3.66806425e-03],
       [  5.50000000e+02,   3.34765459e-03],
       [  5.60000000e+02,   3.80461570e-03],
       [  5.70000000e+02,   3.85011546e-03],
       [  5.80000000e+02,   3.60693643e-03],
       [  5.90000000e+02,   3.15557350e-03],
       [  6.00000000e+02,   3.32210003e-03],
       [  6.10000000e+02,   3.28767416e-03],
       [  6.20000000e+02,   2.88289227e-03],
       [  6.30000000e+02,   2.84908828e-03],
       [  6.40000000e+02,   3.31581617e-03],
       [  6.50000000e+02,   2.80602695e-03],
       [  6.60000000e+02,   2.76946160e-03],
       [  6.70000000e+02,   2.71495990e-03],
       [  6.80000000e+02,   2.52547860e-03],
       [  6.90000000e+02,   2.60824198e-03],
       [  7.00000000e+02,   2.79463362e-03],
       [  7.10000000e+02,   2.58109998e-03],
       [  7.20000000e+02,   2.76109576e-03],
       [  7.30000000e+02,   2.31844047e-03],
       [  7.40000000e+02,   2.73273978e-03],
       [  7.50000000e+02,   2.58772913e-03],
       [  7.60000000e+02,   2.28331704e-03],
       [  7.70000000e+02,   2.69136811e-03],
       [  7.80000000e+02,   2.56716134e-03],
       [  7.90000000e+02,   2.48147198e-03],
       [  8.00000000e+02,   2.31331261e-03],
       [  8.10000000e+02,   2.15493771e-03],
       [  8.20000000e+02,   2.33376143e-03],
       [  8.30000000e+02,   2.01874319e-03],
       [  8.40000000e+02,   2.04768451e-03],
       [  8.50000000e+02,   2.07830686e-03],
       [  8.60000000e+02,   2.19512125e-03],
       [  8.70000000e+02,   2.42997194e-03],
       [  8.80000000e+02,   2.05315789e-03],
       [  8.90000000e+02,   2.27883598e-03],
       [  9.00000000e+02,   2.05022260e-03],
       [  9.10000000e+02,   1.96056394e-03],
       [  9.20000000e+02,   1.85251818e-03],
       [  9.30000000e+02,   1.73176068e-03],
       [  9.40000000e+02,   2.03073025e-03],
       [  9.50000000e+02,   2.23392597e-03],
       [  9.60000000e+02,   2.01467564e-03],
       [  9.70000000e+02,   1.90058933e-03],
       [  9.80000000e+02,   1.91394507e-03],
       [  9.90000000e+02,   1.67136267e-03],
       [  1.00000000e+03,   1.60842645e-03],
       [  1.01000000e+03,   1.46739825e-03],
       [  1.02000000e+03,   1.32955506e-03],
       [  1.03000000e+03,   1.61685015e-03],
       [  1.04000000e+03,   1.65561889e-03],
       [  1.05000000e+03,   1.60828943e-03],
       [  1.06000000e+03,   1.53161574e-03],
       [  1.07000000e+03,   1.59101770e-03],
       [  1.08000000e+03,   1.75807404e-03],
       [  1.09000000e+03,   1.51512772e-03],
       [  1.10000000e+03,   1.30687328e-03],
       [  1.11000000e+03,   1.39617291e-03],
       [  1.12000000e+03,   1.42504636e-03],
       [  1.13000000e+03,   1.33695570e-03],
       [  1.14000000e+03,   1.28335739e-03],
       [  1.15000000e+03,   1.73960568e-03],
       [  1.16000000e+03,   1.31126936e-03],
       [  1.17000000e+03,   1.56872405e-03],
       [  1.18000000e+03,   1.34267274e-03],
       [  1.19000000e+03,   1.39847491e-03],
       [  1.20000000e+03,   1.22323842e-03],
       [  1.21000000e+03,   1.13822997e-03],
       [  1.22000000e+03,   1.42938178e-03],
       [  1.23000000e+03,   1.43208459e-03],
       [  1.24000000e+03,   1.34460453e-03],
       [  1.25000000e+03,   1.88105193e-03],
       [  1.26000000e+03,   1.28378114e-03],
       [  1.27000000e+03,   1.45654904e-03],
       [  1.28000000e+03,   1.29129412e-03],
       [  1.29000000e+03,   1.52279844e-03],
       [  1.30000000e+03,   1.22636242e-03],
       [  1.31000000e+03,   1.21804758e-03],
       [  1.32000000e+03,   1.22829690e-03],
       [  1.33000000e+03,   9.27536166e-04],
       [  1.34000000e+03,   1.07712043e-03],
       [  1.35000000e+03,   1.22907746e-03],
       [  1.36000000e+03,   8.90024356e-04],
       [  1.37000000e+03,   1.03102927e-03],
       [  1.38000000e+03,   1.85414741e-03],
       [  1.39000000e+03,   1.05111743e-03],
       [  1.40000000e+03,   1.10729435e-03],
       [  1.41000000e+03,   1.04203122e-03],
       [  1.42000000e+03,   1.09857519e-03],
       [  1.43000000e+03,   1.39139174e-03],
       [  1.44000000e+03,   1.22202327e-03],
       [  1.45000000e+03,   9.88043612e-04],
       [  1.46000000e+03,   1.04574603e-03],
       [  1.47000000e+03,   9.85451043e-04],
       [  1.48000000e+03,   1.11699896e-03],
       [  1.49000000e+03,   8.67764291e-04],
       [  1.50000000e+03,   1.55183405e-03],
       [  1.51000000e+03,   9.26512352e-04],
       [  1.52000000e+03,   9.01811349e-04],
       [  1.53000000e+03,   8.56888713e-04],
       [  1.54000000e+03,   8.60738743e-04],
       [  1.55000000e+03,   1.33402413e-03],
       [  1.56000000e+03,   8.42967711e-04],
       [  1.57000000e+03,   1.12599775e-03],
       [  1.58000000e+03,   1.07662170e-03],
       [  1.59000000e+03,   8.95051111e-04],
       [  1.60000000e+03,   1.13469642e-03],
       [  1.61000000e+03,   9.23193758e-04],
       [  1.62000000e+03,   4.80679609e-03],
       [  1.63000000e+03,   6.39381399e-03],
       [  1.64000000e+03,   1.28123106e-03],
       [  1.65000000e+03,   8.66188726e-04],
       [  1.66000000e+03,   7.80873874e-04],
       [  1.67000000e+03,   8.33957631e-04],
       [  1.68000000e+03,   8.85847781e-04],
       [  1.69000000e+03,   8.98709462e-04],
       [  1.70000000e+03,   2.03564088e-03],
       [  1.71000000e+03,   1.06045767e-03],
       [  1.72000000e+03,   1.03221158e-03],
       [  1.73000000e+03,   2.90339463e-03],
       [  1.74000000e+03,   1.69916451e-03],
       [  1.75000000e+03,   7.87432713e-04],
       [  1.76000000e+03,   8.65494774e-04],
       [  1.77000000e+03,   7.52690423e-04],
       [  1.78000000e+03,   8.87037604e-04],
       [  1.79000000e+03,   6.85668783e-04],
       [  1.80000000e+03,   1.57764961e-03],
       [  1.81000000e+03,   1.33126695e-03],
       [  1.82000000e+03,   7.51425745e-04],
       [  1.83000000e+03,   1.42862799e-03],
       [  1.84000000e+03,   9.23742482e-04],
       [  1.85000000e+03,   1.11614575e-03],
       [  1.86000000e+03,   6.29607763e-04],
       [  1.87000000e+03,   7.32148415e-04],
       [  1.88000000e+03,   8.04407988e-04],
       [  1.89000000e+03,   7.26758619e-04],
       [  1.90000000e+03,   5.76120103e-04],
       [  1.91000000e+03,   5.07089484e-04],
       [  1.92000000e+03,   6.78267388e-04],
       [  1.93000000e+03,   6.63028506e-04],
       [  1.94000000e+03,   9.89668886e-04],
       [  1.95000000e+03,   7.62208458e-03],
       [  1.96000000e+03,   1.62866653e-03],
       [  1.97000000e+03,   1.11818663e-03],
       [  1.98000000e+03,   9.28766211e-04],
       [  1.99000000e+03,   7.85084092e-04],
       [  2.00000000e+03,   5.86601673e-04],
       [  2.01000000e+03,   5.18271117e-04],
       [  2.02000000e+03,   5.46841242e-04],
       [  2.03000000e+03,   5.96937956e-04],
       [  2.04000000e+03,   6.74773764e-04],
       [  2.05000000e+03,   7.64080731e-04],
       [  2.06000000e+03,   4.85375553e-04],
       [  2.07000000e+03,   5.50887955e-04],
       [  2.08000000e+03,   6.74259150e-04],
       [  2.09000000e+03,   1.61940453e-03],
       [  2.10000000e+03,   9.94797098e-04],
       [  2.11000000e+03,   8.42062058e-04],
       [  2.12000000e+03,   6.65519328e-04],
       [  2.13000000e+03,   1.27558562e-03],
       [  2.14000000e+03,   7.82914460e-04],
       [  2.15000000e+03,   6.54802890e-04],
       [  2.16000000e+03,   4.77460708e-04],
       [  2.17000000e+03,   4.48838546e-04],
       [  2.18000000e+03,   5.09934092e-04],
       [  2.19000000e+03,   1.19736861e-03],
       [  2.20000000e+03,   2.25670612e-03],
       [  2.21000000e+03,   1.21137057e-03],
       [  2.22000000e+03,   1.19532913e-03],
       [  2.23000000e+03,   6.92838104e-04],
       [  2.24000000e+03,   5.73544763e-04],
       [  2.25000000e+03,   5.02661103e-04],
       [  2.26000000e+03,   8.36043851e-04],
       [  2.27000000e+03,   3.61822662e-03],
       [  2.28000000e+03,   5.91823366e-04],
       [  2.29000000e+03,   5.25379321e-03],
       [  2.30000000e+03,   9.56484582e-04],
       [  2.31000000e+03,   4.29267355e-04],
       [  2.32000000e+03,   4.86311852e-04],
       [  2.33000000e+03,   1.08714704e-03],
       [  2.34000000e+03,   7.63970485e-04],
       [  2.35000000e+03,   4.33687819e-04],
       [  2.36000000e+03,   6.46872446e-04],
       [  2.37000000e+03,   5.11613558e-04],
       [  2.38000000e+03,   4.60672076e-04],
       [  2.39000000e+03,   9.29278263e-04],
       [  2.40000000e+03,   1.03490287e-03],
       [  2.41000000e+03,   2.36895331e-03],
       [  2.42000000e+03,   9.99339274e-04],
       [  2.43000000e+03,   4.04851598e-04],
       [  2.44000000e+03,   4.45433194e-04],
       [  2.45000000e+03,   4.33330453e-04],
       [  2.46000000e+03,   4.73813154e-04],
       [  2.47000000e+03,   3.66322114e-04],
       [  2.48000000e+03,   5.46103867e-04],
       [  2.49000000e+03,   4.20714496e-04],
       [  2.50000000e+03,   3.57265089e-04],
       [  2.51000000e+03,   8.84733628e-04],
       [  2.52000000e+03,   1.16093038e-03],
       [  2.53000000e+03,   1.10826846e-02],
       [  2.54000000e+03,   5.52506244e-04],
       [  2.55000000e+03,   3.56514647e-04],
       [  2.56000000e+03,   3.97591357e-04],
       [  2.57000000e+03,   3.52032192e-04],
       [  2.58000000e+03,   5.36011066e-04],
       [  2.59000000e+03,   3.50622169e-04],
       [  2.60000000e+03,   4.20680386e-04],
       [  2.61000000e+03,   6.49139867e-04],
       [  2.62000000e+03,   7.48177641e-04],
       [  2.63000000e+03,   7.72942847e-04],
       [  2.64000000e+03,   1.59547431e-03],
       [  2.65000000e+03,   1.42585742e-03],
       [  2.66000000e+03,   1.62872893e-03],
       [  2.67000000e+03,   5.75655838e-04],
       [  2.68000000e+03,   3.59694648e-04],
       [  2.69000000e+03,   3.37270903e-04],
       [  2.70000000e+03,   3.90696892e-04],
       [  2.71000000e+03,   3.95083043e-04],
       [  2.72000000e+03,   3.42289888e-04],
       [  2.73000000e+03,   4.12322755e-04],
       [  2.74000000e+03,   6.39108999e-04],
       [  2.75000000e+03,   3.79647157e-04],
       [  2.76000000e+03,   9.35855205e-04],
       [  2.77000000e+03,   8.24473507e-04],
       [  2.78000000e+03,   3.76925513e-04],
       [  2.79000000e+03,   4.23456106e-04],
       [  2.80000000e+03,   6.08165166e-04],
       [  2.81000000e+03,   2.65013136e-04],
       [  2.82000000e+03,   2.94867670e-04],
       [  2.83000000e+03,   3.18241422e-04],
       [  2.84000000e+03,   6.09116803e-04],
       [  2.85000000e+03,   1.00229483e-03],
       [  2.86000000e+03,   8.60595726e-04],
       [  2.87000000e+03,   1.75239798e-03],
       [  2.88000000e+03,   1.75377261e-03],
       [  2.89000000e+03,   2.74792721e-04],
       [  2.90000000e+03,   3.66954220e-04],
       [  2.91000000e+03,   3.54643620e-04],
       [  2.92000000e+03,   3.29624861e-04],
       [  2.93000000e+03,   3.26202222e-04],
       [  2.94000000e+03,   3.35671677e-04],
       [  2.95000000e+03,   2.80442648e-04],
       [  2.96000000e+03,   2.74985970e-04],
       [  2.97000000e+03,   3.10174742e-04],
       [  2.98000000e+03,   4.30501823e-04],
       [  2.99000000e+03,   8.73467303e-04],
       [  3.00000000e+03,   1.00922876e-03]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x106674940>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x106648860>

In [ ]: