In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.1,
 'length_of_sequences': 50,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'GradientDescentOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([ 0.02220552,  0.17695722,  0.33647949,  0.49163169,  0.63202316,
        0.74922162,  0.83912903,  0.90206307,  0.94112211,  0.96034342,
        0.96352643,  0.95375103,  0.9333064 ,  0.90378541,  0.86621767,
        0.82118589,  0.76891816,  0.70935625,  0.64220965,  0.56700873,
        0.48317075,  0.39009929,  0.28734344,  0.17484498,  0.05328465,
       -0.07550181, -0.20816538, -0.33978349, -0.46436173, -0.5759452 ,
       -0.66995436, -0.74408585, -0.79836076, -0.83447415, -0.85492909,
       -0.86234403, -0.8590551 , -0.8469581 , -0.82748622, -0.80164975,
       -0.77008945, -0.73312664, -0.69080073, -0.64289522, -0.58895433,
       -0.52829409, -0.46002239, -0.3830792 , -0.29633063, -0.19875565,
       -0.08977892,  0.03021525,  0.15923822,  0.29315606,  0.42569607,
        0.54940462,  0.65741789,  0.74516785,  0.81107044,  0.85602802,
        0.88235128,  0.8927713 ,  0.88982815,  0.87560409,  0.85166794,
        0.81911254,  0.77862537,  0.73055565,  0.67497426,  0.61172825,
        0.54049462,  0.46084744,  0.37235501,  0.27472743,  0.1680339 ,
        0.05299815, -0.06865866, -0.19393086, -0.31848121, -0.43703657,
       -0.54426974, -0.63589543, -0.70948195, -0.76461357, -0.80245006,
       -0.82502568, -0.8346259 , -0.83338428, -0.82308871, -0.80512464,
       -0.78048694, -0.74981689, -0.71344137, -0.67140561, -0.62349612,
       -0.56925654, -0.50800192, -0.43884283, -0.36073628, -0.2725957 ])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   5.23743391e-01],
       [  2.00000000e+01,   4.94891286e-01],
       [  3.00000000e+01,   4.98710543e-01],
       [  4.00000000e+01,   4.67874080e-01],
       [  5.00000000e+01,   3.10484111e-01],
       [  6.00000000e+01,   2.22195715e-01],
       [  7.00000000e+01,   1.63801759e-01],
       [  8.00000000e+01,   8.90101269e-02],
       [  9.00000000e+01,   6.87234998e-02],
       [  1.00000000e+02,   5.47289141e-02],
       [  1.10000000e+02,   4.63143401e-02],
       [  1.20000000e+02,   3.39613333e-02],
       [  1.30000000e+02,   3.41295712e-02],
       [  1.40000000e+02,   3.25229391e-02],
       [  1.50000000e+02,   2.56832838e-02],
       [  1.60000000e+02,   2.23396495e-02],
       [  1.70000000e+02,   2.26417109e-02],
       [  1.80000000e+02,   2.08777469e-02],
       [  1.90000000e+02,   1.72339063e-02],
       [  2.00000000e+02,   1.99982319e-02],
       [  2.10000000e+02,   1.35001875e-02],
       [  2.20000000e+02,   1.45024657e-02],
       [  2.30000000e+02,   1.19754495e-02],
       [  2.40000000e+02,   1.30401673e-02],
       [  2.50000000e+02,   1.17093120e-02],
       [  2.60000000e+02,   1.08915996e-02],
       [  2.70000000e+02,   1.05502419e-02],
       [  2.80000000e+02,   8.83982796e-03],
       [  2.90000000e+02,   7.25682266e-03],
       [  3.00000000e+02,   7.82503281e-03],
       [  3.10000000e+02,   7.67409196e-03],
       [  3.20000000e+02,   7.34860636e-03],
       [  3.30000000e+02,   6.07976364e-03],
       [  3.40000000e+02,   5.74384211e-03],
       [  3.50000000e+02,   4.58402419e-03],
       [  3.60000000e+02,   6.28242828e-03],
       [  3.70000000e+02,   5.28894737e-03],
       [  3.80000000e+02,   4.98718210e-03],
       [  3.90000000e+02,   5.19764191e-03],
       [  4.00000000e+02,   4.77626221e-03],
       [  4.10000000e+02,   4.62218421e-03],
       [  4.20000000e+02,   3.79945850e-03],
       [  4.30000000e+02,   3.91404144e-03],
       [  4.40000000e+02,   3.40476073e-03],
       [  4.50000000e+02,   3.79007705e-03],
       [  4.60000000e+02,   3.24301491e-03],
       [  4.70000000e+02,   2.85747857e-03],
       [  4.80000000e+02,   2.98091536e-03],
       [  4.90000000e+02,   3.06239421e-03],
       [  5.00000000e+02,   2.92160432e-03],
       [  5.10000000e+02,   2.39913561e-03],
       [  5.20000000e+02,   2.93029239e-03],
       [  5.30000000e+02,   2.29255785e-03],
       [  5.40000000e+02,   2.45815283e-03],
       [  5.50000000e+02,   2.79739033e-03],
       [  5.60000000e+02,   2.72411737e-03],
       [  5.70000000e+02,   2.07725167e-03],
       [  5.80000000e+02,   2.32753926e-03],
       [  5.90000000e+02,   1.93580415e-03],
       [  6.00000000e+02,   2.19451729e-03],
       [  6.10000000e+02,   1.85182493e-03],
       [  6.20000000e+02,   2.11565173e-03],
       [  6.30000000e+02,   1.60761003e-03],
       [  6.40000000e+02,   1.91048207e-03],
       [  6.50000000e+02,   1.70967472e-03],
       [  6.60000000e+02,   1.75186340e-03],
       [  6.70000000e+02,   1.70146569e-03],
       [  6.80000000e+02,   1.73606281e-03],
       [  6.90000000e+02,   1.49939326e-03],
       [  7.00000000e+02,   1.67312380e-03],
       [  7.10000000e+02,   1.61177921e-03],
       [  7.20000000e+02,   1.63622957e-03],
       [  7.30000000e+02,   1.53446663e-03],
       [  7.40000000e+02,   1.34711864e-03],
       [  7.50000000e+02,   1.37598393e-03],
       [  7.60000000e+02,   1.42106565e-03],
       [  7.70000000e+02,   1.10041664e-03],
       [  7.80000000e+02,   1.10590877e-03],
       [  7.90000000e+02,   1.03693840e-03],
       [  8.00000000e+02,   1.10693031e-03],
       [  8.10000000e+02,   1.12760079e-03],
       [  8.20000000e+02,   1.36499945e-03],
       [  8.30000000e+02,   1.13421946e-03],
       [  8.40000000e+02,   9.82957194e-04],
       [  8.50000000e+02,   1.27879053e-03],
       [  8.60000000e+02,   1.18486723e-03],
       [  8.70000000e+02,   9.78919910e-04],
       [  8.80000000e+02,   9.16758727e-04],
       [  8.90000000e+02,   1.05102966e-03],
       [  9.00000000e+02,   8.41029745e-04],
       [  9.10000000e+02,   1.02954498e-03],
       [  9.20000000e+02,   1.09348923e-03],
       [  9.30000000e+02,   9.21596715e-04],
       [  9.40000000e+02,   1.01260410e-03],
       [  9.50000000e+02,   1.15491415e-03],
       [  9.60000000e+02,   9.41028120e-04],
       [  9.70000000e+02,   8.48680735e-04],
       [  9.80000000e+02,   1.09033380e-03],
       [  9.90000000e+02,   9.63136088e-04],
       [  1.00000000e+03,   8.69731361e-04],
       [  1.01000000e+03,   8.62976594e-04],
       [  1.02000000e+03,   8.62953486e-04],
       [  1.03000000e+03,   9.10163217e-04],
       [  1.04000000e+03,   7.92748062e-04],
       [  1.05000000e+03,   6.91282446e-04],
       [  1.06000000e+03,   8.19663343e-04],
       [  1.07000000e+03,   1.01209793e-03],
       [  1.08000000e+03,   8.39184504e-04],
       [  1.09000000e+03,   8.10647151e-04],
       [  1.10000000e+03,   8.24360875e-04],
       [  1.11000000e+03,   7.71496969e-04],
       [  1.12000000e+03,   7.18168856e-04],
       [  1.13000000e+03,   7.48390798e-04],
       [  1.14000000e+03,   8.13153223e-04],
       [  1.15000000e+03,   7.95782486e-04],
       [  1.16000000e+03,   7.08316104e-04],
       [  1.17000000e+03,   8.58344138e-04],
       [  1.18000000e+03,   7.61858828e-04],
       [  1.19000000e+03,   6.87628693e-04],
       [  1.20000000e+03,   6.93029491e-04],
       [  1.21000000e+03,   7.87120138e-04],
       [  1.22000000e+03,   7.17477349e-04],
       [  1.23000000e+03,   7.33316760e-04],
       [  1.24000000e+03,   6.98375399e-04],
       [  1.25000000e+03,   5.90858806e-04],
       [  1.26000000e+03,   7.15189206e-04],
       [  1.27000000e+03,   6.95743365e-04],
       [  1.28000000e+03,   7.39817973e-04],
       [  1.29000000e+03,   6.64661813e-04],
       [  1.30000000e+03,   6.96594710e-04],
       [  1.31000000e+03,   6.92198402e-04],
       [  1.32000000e+03,   7.59316084e-04],
       [  1.33000000e+03,   5.94548357e-04],
       [  1.34000000e+03,   6.82506361e-04],
       [  1.35000000e+03,   6.26937719e-04],
       [  1.36000000e+03,   6.00635307e-04],
       [  1.37000000e+03,   6.60683902e-04],
       [  1.38000000e+03,   5.90138137e-04],
       [  1.39000000e+03,   5.26610762e-04],
       [  1.40000000e+03,   6.47702080e-04],
       [  1.41000000e+03,   6.22315507e-04],
       [  1.42000000e+03,   5.84963011e-04],
       [  1.43000000e+03,   6.45396998e-04],
       [  1.44000000e+03,   5.38576860e-04],
       [  1.45000000e+03,   6.73991453e-04],
       [  1.46000000e+03,   6.46879547e-04],
       [  1.47000000e+03,   5.67078358e-04],
       [  1.48000000e+03,   6.49933645e-04],
       [  1.49000000e+03,   4.96776833e-04],
       [  1.50000000e+03,   6.83067890e-04],
       [  1.51000000e+03,   5.70574310e-04],
       [  1.52000000e+03,   5.60387212e-04],
       [  1.53000000e+03,   4.90164966e-04],
       [  1.54000000e+03,   4.75333189e-04],
       [  1.55000000e+03,   5.71977522e-04],
       [  1.56000000e+03,   5.73533820e-04],
       [  1.57000000e+03,   5.91787684e-04],
       [  1.58000000e+03,   6.05609035e-04],
       [  1.59000000e+03,   5.46982803e-04],
       [  1.60000000e+03,   5.45559626e-04],
       [  1.61000000e+03,   5.21923008e-04],
       [  1.62000000e+03,   5.57434163e-04],
       [  1.63000000e+03,   5.20558795e-04],
       [  1.64000000e+03,   4.59000323e-04],
       [  1.65000000e+03,   5.12848434e-04],
       [  1.66000000e+03,   4.48702805e-04],
       [  1.67000000e+03,   5.20781381e-04],
       [  1.68000000e+03,   4.89920028e-04],
       [  1.69000000e+03,   4.96701919e-04],
       [  1.70000000e+03,   5.07282617e-04],
       [  1.71000000e+03,   5.13428880e-04],
       [  1.72000000e+03,   4.79963957e-04],
       [  1.73000000e+03,   4.09842498e-04],
       [  1.74000000e+03,   4.50230989e-04],
       [  1.75000000e+03,   5.12941042e-04],
       [  1.76000000e+03,   5.06314274e-04],
       [  1.77000000e+03,   5.02404931e-04],
       [  1.78000000e+03,   4.51179076e-04],
       [  1.79000000e+03,   4.84848017e-04],
       [  1.80000000e+03,   5.06206881e-04],
       [  1.81000000e+03,   4.48027393e-04],
       [  1.82000000e+03,   3.95686482e-04],
       [  1.83000000e+03,   4.23130026e-04],
       [  1.84000000e+03,   4.85251279e-04],
       [  1.85000000e+03,   4.70509898e-04],
       [  1.86000000e+03,   4.70560743e-04],
       [  1.87000000e+03,   4.03481972e-04],
       [  1.88000000e+03,   5.13000181e-04],
       [  1.89000000e+03,   4.63959062e-04],
       [  1.90000000e+03,   4.72538173e-04],
       [  1.91000000e+03,   3.77635966e-04],
       [  1.92000000e+03,   4.81549097e-04],
       [  1.93000000e+03,   4.46246297e-04],
       [  1.94000000e+03,   4.90528997e-04],
       [  1.95000000e+03,   4.03635611e-04],
       [  1.96000000e+03,   4.58088354e-04],
       [  1.97000000e+03,   4.28521482e-04],
       [  1.98000000e+03,   5.18360233e-04],
       [  1.99000000e+03,   4.14475566e-04],
       [  2.00000000e+03,   3.56514269e-04]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x1119d5898>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x1119a7860>

In [ ]: