In [1]:
import pandas as pd
import numpy as np
import yaml
%matplotlib inline

In [2]:
with open("param.yaml", "r") as file:
    param = yaml.load(file.read())
param


Out[2]:
{'forget_bias': 1.0,
 'learning_rate': 0.1,
 'length_of_sequences': 50,
 'num_of_hidden_nodes': 2,
 'num_of_input_nodes': 1,
 'num_of_output_nodes': 1,
 'num_of_prediction_epochs': 100,
 'num_of_training_epochs': 2000,
 'optimizer': 'AdamOptimizer',
 'seed': 0,
 'size_of_mini_batch': 100,
 'train_data_path': '../train_data/normal.npy'}

In [3]:
train = np.load(param["train_data_path"])
train


Out[3]:
array([[  0.00000000e+00,   1.25333234e-01],
       [  1.25333234e-01,   2.48689887e-01],
       [  2.48689887e-01,   3.68124553e-01],
       ..., 
       [ -3.68124553e-01,  -2.48689887e-01],
       [ -2.48689887e-01,  -1.25333234e-01],
       [ -1.25333234e-01,   3.92877345e-15]])

In [4]:
initial = np.load("initial.npy")
initial


Out[4]:
array([  0.00000000e+00,   1.25333234e-01,   2.48689887e-01,
         3.68124553e-01,   4.81753674e-01,   5.87785252e-01,
         6.84547106e-01,   7.70513243e-01,   8.44327926e-01,
         9.04827052e-01,   9.51056516e-01,   9.82287251e-01,
         9.98026728e-01,   9.98026728e-01,   9.82287251e-01,
         9.51056516e-01,   9.04827052e-01,   8.44327926e-01,
         7.70513243e-01,   6.84547106e-01,   5.87785252e-01,
         4.81753674e-01,   3.68124553e-01,   2.48689887e-01,
         1.25333234e-01,  -3.21624530e-16,  -1.25333234e-01,
        -2.48689887e-01,  -3.68124553e-01,  -4.81753674e-01,
        -5.87785252e-01,  -6.84547106e-01,  -7.70513243e-01,
        -8.44327926e-01,  -9.04827052e-01,  -9.51056516e-01,
        -9.82287251e-01,  -9.98026728e-01,  -9.98026728e-01,
        -9.82287251e-01,  -9.51056516e-01,  -9.04827052e-01,
        -8.44327926e-01,  -7.70513243e-01,  -6.84547106e-01,
        -5.87785252e-01,  -4.81753674e-01,  -3.68124553e-01,
        -2.48689887e-01,  -1.25333234e-01])

In [5]:
output = np.load("output.npy")
output


Out[5]:
array([  2.83628702e-04,   1.25220656e-01,   2.46496677e-01,
         3.62098396e-01,   4.71018583e-01,   5.73093295e-01,
         6.68254435e-01,   7.55321681e-01,   8.31420958e-01,
         8.92778456e-01,   9.36342835e-01,   9.61099923e-01,
         9.68107462e-01,   9.59291101e-01,   9.36133742e-01,
         8.99040818e-01,   8.47349465e-01,   7.79820740e-01,
         6.95699573e-01,   5.96313715e-01,   4.86185819e-01,
         3.71985435e-01,   2.59565383e-01,   1.51709214e-01,
         4.80490923e-02,  -5.36487699e-02,  -1.56006217e-01,
        -2.60868192e-01,  -3.68465126e-01,  -4.76891696e-01,
        -5.82098544e-01,  -6.78666294e-01,  -7.61285603e-01,
        -8.26281726e-01,  -8.72356117e-01,  -9.00277674e-01,
        -9.11976278e-01,  -9.09641206e-01,  -8.95137727e-01,
        -8.69748294e-01,  -8.34122002e-01,  -7.88319170e-01,
        -7.31931269e-01,  -6.64238214e-01,  -5.84427655e-01,
        -4.91863847e-01,  -3.86521637e-01,  -2.69454122e-01,
        -1.43157899e-01,  -1.17858052e-02,   1.19671121e-01,
         2.46818155e-01,   3.66988510e-01,   4.79326248e-01,
         5.83918810e-01,   6.80491328e-01,   7.67520905e-01,
         8.42176259e-01,   9.01080787e-01,   9.41686749e-01,
         9.63451266e-01,   9.67714071e-01,   9.56425011e-01,
         9.30925488e-01,   8.91438603e-01,   8.37164998e-01,
         7.66863167e-01,   6.80017471e-01,   5.78454792e-01,
         4.67203200e-01,   3.53019357e-01,   2.41342992e-01,
         1.34380937e-01,   3.13458741e-02,  -7.01583326e-02,
        -1.72697991e-01,  -2.77907431e-01,  -3.85701716e-01,
        -4.93822157e-01,  -5.97936213e-01,  -6.92539632e-01,
        -7.72499263e-01,  -8.34495723e-01,  -8.77594173e-01,
        -9.02802408e-01,  -9.12136972e-01,  -9.07769263e-01,
        -8.91484439e-01,  -8.64460051e-01,  -8.27261269e-01,
        -7.79893816e-01,  -7.21895874e-01,  -6.52494490e-01,
        -5.70840597e-01,  -4.76309240e-01,  -3.69034111e-01,
        -2.50574887e-01,  -1.23953909e-01,   6.53201342e-03,
         1.35919765e-01])

In [6]:
losses = np.load("losses.npy")
losses


Out[6]:
array([[  1.00000000e+01,   6.10969737e-02],
       [  2.00000000e+01,   7.77162658e-03],
       [  3.00000000e+01,   5.52238105e-03],
       [  4.00000000e+01,   1.76544930e-03],
       [  5.00000000e+01,   1.60719675e-03],
       [  6.00000000e+01,   1.13896222e-03],
       [  7.00000000e+01,   4.38332325e-04],
       [  8.00000000e+01,   5.86728682e-04],
       [  9.00000000e+01,   5.89998439e-04],
       [  1.00000000e+02,   2.79696338e-04],
       [  1.10000000e+02,   2.95644713e-04],
       [  1.20000000e+02,   2.29450132e-04],
       [  1.30000000e+02,   2.56181287e-04],
       [  1.40000000e+02,   1.35044422e-04],
       [  1.50000000e+02,   9.05569832e-05],
       [  1.60000000e+02,   9.92824134e-05],
       [  1.70000000e+02,   8.34013335e-05],
       [  1.80000000e+02,   9.14113989e-05],
       [  1.90000000e+02,   1.08302695e-04],
       [  2.00000000e+02,   1.17158750e-04],
       [  2.10000000e+02,   1.10270797e-04],
       [  2.20000000e+02,   3.83183906e-05],
       [  2.30000000e+02,   4.02834303e-05],
       [  2.40000000e+02,   4.48412247e-05],
       [  2.50000000e+02,   1.75699854e-04],
       [  2.60000000e+02,   3.59078513e-05],
       [  2.70000000e+02,   3.58345787e-05],
       [  2.80000000e+02,   4.43954377e-05],
       [  2.90000000e+02,   2.94308829e-05],
       [  3.00000000e+02,   8.03085568e-05],
       [  3.10000000e+02,   2.07529793e-05],
       [  3.20000000e+02,   1.71598644e-04],
       [  3.30000000e+02,   4.65605408e-04],
       [  3.40000000e+02,   5.07283075e-05],
       [  3.50000000e+02,   2.03789386e-04],
       [  3.60000000e+02,   1.93025771e-05],
       [  3.70000000e+02,   4.25378967e-05],
       [  3.80000000e+02,   1.25800303e-04],
       [  3.90000000e+02,   2.28154331e-05],
       [  4.00000000e+02,   4.02827645e-05],
       [  4.10000000e+02,   4.57815004e-05],
       [  4.20000000e+02,   1.61580574e-05],
       [  4.30000000e+02,   3.01140899e-05],
       [  4.40000000e+02,   9.02587344e-05],
       [  4.50000000e+02,   3.33210221e-03],
       [  4.60000000e+02,   1.50356675e-03],
       [  4.70000000e+02,   7.84631848e-05],
       [  4.80000000e+02,   9.22413019e-05],
       [  4.90000000e+02,   1.81988740e-04],
       [  5.00000000e+02,   6.36586919e-05],
       [  5.10000000e+02,   4.42359415e-05],
       [  5.20000000e+02,   3.14874960e-05],
       [  5.30000000e+02,   6.59197322e-05],
       [  5.40000000e+02,   4.18465315e-05],
       [  5.50000000e+02,   2.90503867e-05],
       [  5.60000000e+02,   1.77055881e-05],
       [  5.70000000e+02,   5.37441301e-05],
       [  5.80000000e+02,   6.29912101e-05],
       [  5.90000000e+02,   8.94680416e-05],
       [  6.00000000e+02,   2.89067830e-05],
       [  6.10000000e+02,   1.01456491e-04],
       [  6.20000000e+02,   1.96453548e-05],
       [  6.30000000e+02,   3.45041044e-05],
       [  6.40000000e+02,   2.78717671e-05],
       [  6.50000000e+02,   1.77251659e-05],
       [  6.60000000e+02,   1.39132617e-05],
       [  6.70000000e+02,   3.81565405e-05],
       [  6.80000000e+02,   7.86456658e-05],
       [  6.90000000e+02,   2.08908823e-04],
       [  7.00000000e+02,   5.14062012e-05],
       [  7.10000000e+02,   5.21111033e-05],
       [  7.20000000e+02,   1.46123757e-05],
       [  7.30000000e+02,   6.78271681e-05],
       [  7.40000000e+02,   5.08984231e-05],
       [  7.50000000e+02,   2.30509577e-05],
       [  7.60000000e+02,   2.91194156e-05],
       [  7.70000000e+02,   1.86885991e-05],
       [  7.80000000e+02,   3.35167679e-05],
       [  7.90000000e+02,   2.27156183e-04],
       [  8.00000000e+02,   4.24601822e-05],
       [  8.10000000e+02,   6.19676546e-04],
       [  8.20000000e+02,   5.20430680e-04],
       [  8.30000000e+02,   5.20468457e-05],
       [  8.40000000e+02,   3.97397853e-05],
       [  8.50000000e+02,   5.15194697e-05],
       [  8.60000000e+02,   6.05165224e-05],
       [  8.70000000e+02,   2.51259335e-05],
       [  8.80000000e+02,   1.13653819e-04],
       [  8.90000000e+02,   7.12659443e-04],
       [  9.00000000e+02,   7.46952835e-04],
       [  9.10000000e+02,   3.31264164e-04],
       [  9.20000000e+02,   4.29162465e-05],
       [  9.30000000e+02,   1.68648767e-05],
       [  9.40000000e+02,   2.37524146e-05],
       [  9.50000000e+02,   1.86908619e-05],
       [  9.60000000e+02,   3.99018536e-05],
       [  9.70000000e+02,   1.84328484e-04],
       [  9.80000000e+02,   4.83773729e-05],
       [  9.90000000e+02,   7.37997616e-05],
       [  1.00000000e+03,   2.55007690e-05],
       [  1.01000000e+03,   4.05246064e-05],
       [  1.02000000e+03,   1.96581641e-05],
       [  1.03000000e+03,   3.71242699e-04],
       [  1.04000000e+03,   1.11877988e-03],
       [  1.05000000e+03,   1.08024338e-03],
       [  1.06000000e+03,   3.74444237e-04],
       [  1.07000000e+03,   3.51462404e-05],
       [  1.08000000e+03,   3.30660951e-05],
       [  1.09000000e+03,   1.70626416e-04],
       [  1.10000000e+03,   4.79441042e-05],
       [  1.11000000e+03,   3.75970740e-05],
       [  1.12000000e+03,   1.56329057e-04],
       [  1.13000000e+03,   1.35360287e-05],
       [  1.14000000e+03,   8.71407028e-05],
       [  1.15000000e+03,   9.54330972e-05],
       [  1.16000000e+03,   2.88726242e-05],
       [  1.17000000e+03,   2.01006933e-05],
       [  1.18000000e+03,   4.26631887e-05],
       [  1.19000000e+03,   1.99111219e-05],
       [  1.20000000e+03,   4.78418515e-05],
       [  1.21000000e+03,   3.48768299e-05],
       [  1.22000000e+03,   3.76810291e-04],
       [  1.23000000e+03,   1.40803648e-04],
       [  1.24000000e+03,   1.02131779e-03],
       [  1.25000000e+03,   1.20042961e-04],
       [  1.26000000e+03,   6.52319170e-04],
       [  1.27000000e+03,   3.97263910e-04],
       [  1.28000000e+03,   5.38318418e-04],
       [  1.29000000e+03,   7.37772425e-05],
       [  1.30000000e+03,   8.92243334e-05],
       [  1.31000000e+03,   2.74681715e-05],
       [  1.32000000e+03,   2.73687074e-05],
       [  1.33000000e+03,   9.33137926e-05],
       [  1.34000000e+03,   4.21714030e-05],
       [  1.35000000e+03,   3.78919176e-05],
       [  1.36000000e+03,   1.56807782e-05],
       [  1.37000000e+03,   3.31931806e-05],
       [  1.38000000e+03,   1.45089463e-04],
       [  1.39000000e+03,   8.85264380e-05],
       [  1.40000000e+03,   8.94753830e-05],
       [  1.41000000e+03,   6.12463409e-05],
       [  1.42000000e+03,   4.15983814e-05],
       [  1.43000000e+03,   2.18076493e-05],
       [  1.44000000e+03,   2.97649749e-05],
       [  1.45000000e+03,   9.18175283e-05],
       [  1.46000000e+03,   3.65466767e-05],
       [  1.47000000e+03,   4.56915332e-05],
       [  1.48000000e+03,   2.23563711e-05],
       [  1.49000000e+03,   1.75619498e-05],
       [  1.50000000e+03,   3.74899173e-05],
       [  1.51000000e+03,   9.88875545e-05],
       [  1.52000000e+03,   1.29086002e-05],
       [  1.53000000e+03,   1.14558454e-04],
       [  1.54000000e+03,   2.20962407e-04],
       [  1.55000000e+03,   1.96731067e-04],
       [  1.56000000e+03,   3.06505215e-04],
       [  1.57000000e+03,   4.14968294e-04],
       [  1.58000000e+03,   3.53203795e-05],
       [  1.59000000e+03,   2.74486316e-04],
       [  1.60000000e+03,   8.22234870e-05],
       [  1.61000000e+03,   1.48445310e-04],
       [  1.62000000e+03,   2.07026489e-04],
       [  1.63000000e+03,   3.43131542e-05],
       [  1.64000000e+03,   4.31808076e-05],
       [  1.65000000e+03,   3.01565924e-05],
       [  1.66000000e+03,   1.48747504e-05],
       [  1.67000000e+03,   1.90546307e-05],
       [  1.68000000e+03,   1.85402896e-05],
       [  1.69000000e+03,   2.98473082e-04],
       [  1.70000000e+03,   3.79519013e-04],
       [  1.71000000e+03,   5.43937786e-04],
       [  1.72000000e+03,   3.57387878e-04],
       [  1.73000000e+03,   9.88785250e-05],
       [  1.74000000e+03,   3.71587899e-04],
       [  1.75000000e+03,   1.02332662e-04],
       [  1.76000000e+03,   4.07013431e-05],
       [  1.77000000e+03,   4.03152226e-05],
       [  1.78000000e+03,   2.32265138e-05],
       [  1.79000000e+03,   2.16038843e-05],
       [  1.80000000e+03,   5.15775937e-05],
       [  1.81000000e+03,   3.19301580e-05],
       [  1.82000000e+03,   1.61456774e-05],
       [  1.83000000e+03,   1.89387683e-05],
       [  1.84000000e+03,   4.76303794e-05],
       [  1.85000000e+03,   2.07834964e-05],
       [  1.86000000e+03,   2.10150338e-05],
       [  1.87000000e+03,   1.23333484e-05],
       [  1.88000000e+03,   4.17010706e-05],
       [  1.89000000e+03,   3.82699618e-05],
       [  1.90000000e+03,   2.48225351e-05],
       [  1.91000000e+03,   2.45992778e-05],
       [  1.92000000e+03,   5.65225273e-05],
       [  1.93000000e+03,   7.30186512e-05],
       [  1.94000000e+03,   3.55231095e-05],
       [  1.95000000e+03,   6.28243142e-05],
       [  1.96000000e+03,   5.96105092e-05],
       [  1.97000000e+03,   2.35389125e-05],
       [  1.98000000e+03,   9.40761765e-06],
       [  1.99000000e+03,   8.98922553e-06],
       [  2.00000000e+03,   6.26939482e-06]])

In [7]:
train_df = pd.DataFrame(train[:len(initial) + len(output), 0], columns=["train"])
initial_df = pd.DataFrame(initial, columns=["initial"])
output_df = pd.DataFrame(output, columns=["output"], index=range(len(initial), len(initial) + len(output)))
merged = pd.concat([train_df, initial_df, output_df])
merged.plot(figsize=(15, 5), grid=True, style=["-", "-", "k--"])


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x10e62e908>

In [8]:
losses_df = pd.DataFrame(losses, columns=["epoch", "loss"])
losses_df.plot(figsize=(15, 5), grid=True, logy=True, x="epoch")


Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x10e6016a0>

In [ ]: