Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7f812377b630>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7f81212d5fd0>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    return (tf.placeholder(tf.float32, (None, image_width, image_height, image_channels)), 
            tf.placeholder(tf.float32, (None, z_dim)),
            tf.placeholder(tf.float32))


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [6]:
def discriminator(images, reuse=False, alpha = 0.02):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    with tf.variable_scope("discriminator", reuse=reuse):
        l1 = tf.layers.conv2d(
            images, 64, kernel_size=2, strides=2, padding='same'
        )
        n1 = tf.layers.batch_normalization(l1, training=True)
        r1 = tf.maximum(alpha * n1, n1)
        
        l2 = tf.layers.conv2d(
            r1, 128, kernel_size=3, strides=2, padding='same'
        )
        n2 = tf.layers.batch_normalization(l2, training=True)
        r2 = tf.maximum(alpha * n2, n2)
        
        l3 = tf.layers.conv2d(
            r2, 256, kernel_size=5, strides=2, padding='same'
        )
        n3 = tf.layers.batch_normalization(l3, training=True)
        r3 = tf.maximum(alpha * n3, n3)
        
        flat = tf.reshape(r3, (-1, 4 * 4 * 256))
        
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
    
        return out, logits

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [7]:
def generator(z, out_channel_dim, is_train=True, alpha = 0.02):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    with tf.variable_scope('generator',reuse=(not is_train)): 
        dense = tf.layers.dense(z, 7 * 7 * 1024)
        l1 = tf.reshape(dense, (-1, 7, 7, 1024))
        
        n1 = tf.layers.batch_normalization(l1, training=is_train)
        m1 = tf.maximum(alpha * n1, n1)
        
        l2 = tf.layers.conv2d_transpose(m1, 256, 5, strides=1, padding='same')
        n2 = tf.layers.batch_normalization(l2, training=is_train)
        m2 = tf.maximum(alpha * n2, n2)
        
        l3 = tf.layers.conv2d_transpose(m2, 128, 3, strides=2, padding='same')
        n3 = tf.layers.batch_normalization(l3, training=is_train)
        m3 = tf.maximum(alpha * n3, n3)
        
        logits = tf.layers.conv2d_transpose(
            m3, out_channel_dim, 5, strides = 2, padding='same'
        )
        result = tf.tanh(logits)
        
        return result


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [8]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    alpha = 0.05
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(
            logits=d_logits_real, labels=tf.ones_like(d_model_real)
        )
    )
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(
            logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)
        )
    )
    d_loss = d_loss_real + d_loss_fake
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(
            logits=d_logits_fake, labels=tf.ones_like(d_model_fake)
        )
    ) 
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [9]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    train_vars = tf.trainable_variables()
    d_vars = [var for var in train_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in train_vars if var.name.startswith('generator')]
   
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        g_opt_train = tf.train.AdamOptimizer(
            learning_rate=learning_rate, beta1=beta1
        ).minimize(g_loss, var_list=g_vars)
        d_opt_train = tf.train.AdamOptimizer(
            learning_rate=learning_rate,beta1=beta1
        ).minimize(d_loss, var_list=d_vars)
    
        return d_opt_train, g_opt_train


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [10]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [13]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """

    losses = []
    steps = 0
    images_display = 16
    _, image_width, image_height, image_channels = data_shape
    input_real, input_fake, lr = model_inputs(
        image_width, image_height, image_channels, z_dim
    )
    
    d_loss, g_loss = model_loss(input_real, input_fake, image_channels)
    d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                
                batch_images *= 2.0
                batch_gen = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                sess.run(
                    d_opt, feed_dict={
                        input_real: batch_images,
                        input_fake: batch_gen,
                        lr: learning_rate
                    }
                )
                sess.run(
                    g_opt, feed_dict={
                        input_real: batch_images,
                        input_fake: batch_gen,
                        lr: learning_rate
                    }
                )
                sess.run(
                    g_opt, feed_dict={
                        input_real: batch_images,
                        input_fake: batch_gen,
                        lr: learning_rate
                    }
                )
                
                if steps % 25 == 0 :
                    train_loss_d = d_loss.eval({
                        input_real: batch_images,
                        input_fake: batch_gen,
                        lr: learning_rate
                        })
                    train_loss_g = g_loss.eval({
                        input_real: batch_images,
                        input_fake: batch_gen,
                        lr: learning_rate
                    })
                    print("Epoch {}/{}...".format(epoch_i+1, epoch_count),
                      "Discriminator Loss: {:.4f}...".format(train_loss_d),
                      "Generator Loss: {:.4f}".format(train_loss_g))
                
                    losses.append((train_loss_d, train_loss_g))
                if steps % 100 == 0:
                    show_generator_output(
                        sess, images_display, input_fake, image_channels, data_image_mode
                    )
                steps += 1

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [14]:
batch_size = 128
z_dim = 250
learning_rate = 0.0005
beta1 = 0.25


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 10.1919... Generator Loss: 0.0000
Epoch 1/2... Discriminator Loss: 2.7159... Generator Loss: 0.2527
Epoch 1/2... Discriminator Loss: 2.5279... Generator Loss: 0.1253
Epoch 1/2... Discriminator Loss: 1.9643... Generator Loss: 0.5239
Epoch 1/2... Discriminator Loss: 2.0442... Generator Loss: 0.1878
Epoch 1/2... Discriminator Loss: 1.7681... Generator Loss: 0.7180
Epoch 1/2... Discriminator Loss: 2.0151... Generator Loss: 0.1944
Epoch 1/2... Discriminator Loss: 1.7887... Generator Loss: 0.6122
Epoch 1/2... Discriminator Loss: 2.0646... Generator Loss: 0.1764
Epoch 1/2... Discriminator Loss: 1.7554... Generator Loss: 0.7554
Epoch 1/2... Discriminator Loss: 1.9902... Generator Loss: 0.1982
Epoch 1/2... Discriminator Loss: 1.6831... Generator Loss: 0.3832
Epoch 1/2... Discriminator Loss: 1.7868... Generator Loss: 0.2647
Epoch 1/2... Discriminator Loss: 1.5711... Generator Loss: 0.5269
Epoch 1/2... Discriminator Loss: 1.8093... Generator Loss: 0.2621
Epoch 1/2... Discriminator Loss: 1.5778... Generator Loss: 0.8577
Epoch 1/2... Discriminator Loss: 1.7718... Generator Loss: 0.2678
Epoch 1/2... Discriminator Loss: 1.5464... Generator Loss: 0.9786
Epoch 1/2... Discriminator Loss: 1.9003... Generator Loss: 0.2128
Epoch 2/2... Discriminator Loss: 1.5590... Generator Loss: 0.9307
Epoch 2/2... Discriminator Loss: 1.4999... Generator Loss: 1.2223
Epoch 2/2... Discriminator Loss: 1.5403... Generator Loss: 0.3554
Epoch 2/2... Discriminator Loss: 1.9527... Generator Loss: 0.1960
Epoch 2/2... Discriminator Loss: 1.2749... Generator Loss: 0.6649
Epoch 2/2... Discriminator Loss: 1.6366... Generator Loss: 0.3065
Epoch 2/2... Discriminator Loss: 1.3745... Generator Loss: 0.5945
Epoch 2/2... Discriminator Loss: 1.8916... Generator Loss: 0.2072
Epoch 2/2... Discriminator Loss: 1.3357... Generator Loss: 1.3135
Epoch 2/2... Discriminator Loss: 1.8400... Generator Loss: 0.2233
Epoch 2/2... Discriminator Loss: 1.5738... Generator Loss: 1.0961
Epoch 2/2... Discriminator Loss: 1.2512... Generator Loss: 1.2335
Epoch 2/2... Discriminator Loss: 1.7128... Generator Loss: 0.2693
Epoch 2/2... Discriminator Loss: 1.3655... Generator Loss: 0.4331
Epoch 2/2... Discriminator Loss: 1.4385... Generator Loss: 0.6109
Epoch 2/2... Discriminator Loss: 1.4157... Generator Loss: 0.4524
Epoch 2/2... Discriminator Loss: 1.1213... Generator Loss: 0.9437
Epoch 2/2... Discriminator Loss: 1.4500... Generator Loss: 0.3912
Epoch 2/2... Discriminator Loss: 1.2976... Generator Loss: 0.4880

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [15]:
batch_size = 128
z_dim = 250
learning_rate = 0.00025
beta1 = 0.25


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Discriminator Loss: 7.6899... Generator Loss: 0.0007
Epoch 1/1... Discriminator Loss: 2.6860... Generator Loss: 0.3058
Epoch 1/1... Discriminator Loss: 2.9496... Generator Loss: 0.1710
Epoch 1/1... Discriminator Loss: 2.5194... Generator Loss: 0.2704
Epoch 1/1... Discriminator Loss: 2.1422... Generator Loss: 0.3212
Epoch 1/1... Discriminator Loss: 1.9209... Generator Loss: 0.4088
Epoch 1/1... Discriminator Loss: 2.0655... Generator Loss: 0.3331
Epoch 1/1... Discriminator Loss: 2.0565... Generator Loss: 0.3594
Epoch 1/1... Discriminator Loss: 1.9335... Generator Loss: 0.3023
Epoch 1/1... Discriminator Loss: 1.8631... Generator Loss: 0.4424
Epoch 1/1... Discriminator Loss: 1.9316... Generator Loss: 0.3097
Epoch 1/1... Discriminator Loss: 1.7327... Generator Loss: 0.5668
Epoch 1/1... Discriminator Loss: 1.6813... Generator Loss: 0.4558
Epoch 1/1... Discriminator Loss: 1.7105... Generator Loss: 0.5324
Epoch 1/1... Discriminator Loss: 1.7032... Generator Loss: 0.5161
Epoch 1/1... Discriminator Loss: 1.7342... Generator Loss: 0.4175
Epoch 1/1... Discriminator Loss: 1.7534... Generator Loss: 0.3799
Epoch 1/1... Discriminator Loss: 1.6510... Generator Loss: 0.5241
Epoch 1/1... Discriminator Loss: 1.6381... Generator Loss: 0.4719
Epoch 1/1... Discriminator Loss: 1.6523... Generator Loss: 0.4725
Epoch 1/1... Discriminator Loss: 1.6006... Generator Loss: 0.6885
Epoch 1/1... Discriminator Loss: 1.5698... Generator Loss: 0.6658
Epoch 1/1... Discriminator Loss: 1.5759... Generator Loss: 0.6029
Epoch 1/1... Discriminator Loss: 1.6183... Generator Loss: 0.5170
Epoch 1/1... Discriminator Loss: 1.5952... Generator Loss: 0.4989
Epoch 1/1... Discriminator Loss: 1.5779... Generator Loss: 0.5182
Epoch 1/1... Discriminator Loss: 1.6013... Generator Loss: 0.5243
Epoch 1/1... Discriminator Loss: 1.5841... Generator Loss: 0.5617
Epoch 1/1... Discriminator Loss: 1.6037... Generator Loss: 0.4995
Epoch 1/1... Discriminator Loss: 1.5290... Generator Loss: 0.5321
Epoch 1/1... Discriminator Loss: 1.5439... Generator Loss: 0.5147
Epoch 1/1... Discriminator Loss: 1.5580... Generator Loss: 0.5692
Epoch 1/1... Discriminator Loss: 1.6008... Generator Loss: 0.5004
Epoch 1/1... Discriminator Loss: 1.5590... Generator Loss: 0.5286
Epoch 1/1... Discriminator Loss: 1.5261... Generator Loss: 0.5451
Epoch 1/1... Discriminator Loss: 1.5722... Generator Loss: 0.5040
Epoch 1/1... Discriminator Loss: 1.5435... Generator Loss: 0.5452
Epoch 1/1... Discriminator Loss: 1.5348... Generator Loss: 0.5264
Epoch 1/1... Discriminator Loss: 1.5309... Generator Loss: 0.6420
Epoch 1/1... Discriminator Loss: 1.5268... Generator Loss: 0.5442
Epoch 1/1... Discriminator Loss: 1.5549... Generator Loss: 0.5909
Epoch 1/1... Discriminator Loss: 1.5212... Generator Loss: 0.5966
Epoch 1/1... Discriminator Loss: 1.5249... Generator Loss: 0.5451
Epoch 1/1... Discriminator Loss: 1.5305... Generator Loss: 0.5074
Epoch 1/1... Discriminator Loss: 1.5290... Generator Loss: 0.5121
Epoch 1/1... Discriminator Loss: 1.4862... Generator Loss: 0.6194
Epoch 1/1... Discriminator Loss: 1.5201... Generator Loss: 0.5814
Epoch 1/1... Discriminator Loss: 1.5010... Generator Loss: 0.6138
Epoch 1/1... Discriminator Loss: 1.5483... Generator Loss: 0.5410
Epoch 1/1... Discriminator Loss: 1.5240... Generator Loss: 0.5954
Epoch 1/1... Discriminator Loss: 1.5018... Generator Loss: 0.5653
Epoch 1/1... Discriminator Loss: 1.5463... Generator Loss: 0.5451
Epoch 1/1... Discriminator Loss: 1.5053... Generator Loss: 0.5855
Epoch 1/1... Discriminator Loss: 1.4922... Generator Loss: 0.6480
Epoch 1/1... Discriminator Loss: 1.5068... Generator Loss: 0.6032
Epoch 1/1... Discriminator Loss: 1.4988... Generator Loss: 0.6130
Epoch 1/1... Discriminator Loss: 1.4858... Generator Loss: 0.6234
Epoch 1/1... Discriminator Loss: 1.4886... Generator Loss: 0.6139
Epoch 1/1... Discriminator Loss: 1.4933... Generator Loss: 0.6419
Epoch 1/1... Discriminator Loss: 1.5057... Generator Loss: 0.6240
Epoch 1/1... Discriminator Loss: 1.5113... Generator Loss: 0.5998
Epoch 1/1... Discriminator Loss: 1.4882... Generator Loss: 0.5999
Epoch 1/1... Discriminator Loss: 1.4925... Generator Loss: 0.6205
Epoch 1/1... Discriminator Loss: 1.4931... Generator Loss: 0.5942

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.