In [1]:
import sys; print('Python \t\t{0[0]}.{0[1]}'.format(sys.version_info))
In [2]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
In [3]:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./", one_hot=True)
In [4]:
mnist.train.images.shape
Out[4]:
In [5]:
plt.figure(figsize=(15,5))
for i in list(range(10)):
plt.subplot(1, 10, i+1)
pixels = mnist.test.images[i+100]
pixels = pixels.reshape((28, 28))
plt.imshow(pixels, cmap='gray_r')
plt.show()
In [6]:
def test_render(pixels, result, truth):
#pixels, result and truth are np vectors
plt.figure(figsize=(10,5))
plt.subplot(1, 2, 1)
pixels = pixels.reshape((28, 28))
plt.imshow(pixels, cmap='gray_r')
plt.subplot(1, 2, 2)
#index, witdh
ind = np.arange(len(result))
width = 0.49
plt.barh(ind,result, width, color='orange', edgecolor='k', hatch="/")
plt.barh(ind+width,truth,width, color='g', edgecolor='k')
plt.yticks(ind+width, range(10))
plt.margins(y=0)
plt.show()
In [7]:
import random
i = 100 #it's a "six"
pixels = mnist.test.images[i]
truth = mnist.test.labels[i]
result = [0.3, 0.1, 0., 0., 0., 0., 0.9, 0., 0., 0. ]
test_render(pixels, result, truth)
In [ ]: