---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-218-3fb383b24c40> in <module>()
1 model.fit(train_sequences, mnist.train.labels,
2 batch_size=250, nb_epoch=5, verbose=1,
----> 3 validation_data=(test_sequences, mnist.test.labels))
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/keras/models.py in fit(self, x, y, batch_size, nb_epoch, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)
670 class_weight=class_weight,
671 sample_weight=sample_weight,
--> 672 initial_epoch=initial_epoch)
673
674 def evaluate(self, x, y, batch_size=32, verbose=1,
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, nb_epoch, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch)
1194 val_f=val_f, val_ins=val_ins, shuffle=shuffle,
1195 callback_metrics=callback_metrics,
-> 1196 initial_epoch=initial_epoch)
1197
1198 def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, nb_epoch, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)
889 batch_logs['size'] = len(batch_ids)
890 callbacks.on_batch_begin(batch_index, batch_logs)
--> 891 outs = f(ins_batch)
892 if not isinstance(outs, list):
893 outs = [outs]
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
1941 session = get_session()
1942 updated = session.run(self.outputs + [self.updates_op],
-> 1943 feed_dict=feed_dict)
1944 return updated[:len(self.outputs)]
1945
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
963 if final_fetches or final_targets:
964 results = self._do_run(handle, final_targets, final_fetches,
--> 965 feed_dict_string, options, run_metadata)
966 else:
967 results = []
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1013 if handle is None:
1014 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015 target_list, options, run_metadata)
1016 else:
1017 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1020 def _do_call(self, fn, *args):
1021 try:
-> 1022 return fn(*args)
1023 except errors.OpError as e:
1024 message = compat.as_text(e.message)
/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1002 return tf_session.TF_Run(session, options,
1003 feed_dict, fetch_list, target_list,
-> 1004 status, run_metadata)
1005
1006 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: