OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 1.259e+32
Date: Fri, 26 Feb 2016 Prob (F-statistic): 0.00
Time: 00:59:14 Log-Likelihood: 3000.4
No. Observations: 100 AIC: -5993.
Df Residuals: 96 BIC: -5982.
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
const 1.4000 2.4e-15 5.84e+14 0.000 1.400 1.400
x1 1.8000 2.15e-15 8.37e+14 0.000 1.800 1.800
x2 0.5000 2.59e-17 1.93e+16 0.000 0.500 0.500
x3 -0.3000 1.32e-15 -2.27e+14 0.000 -0.300 -0.300
==============================================================================
Omnibus: 4.206 Durbin-Watson: 1.849
Prob(Omnibus): 0.122 Jarque-Bera (JB): 3.654
Skew: 0.455 Prob(JB): 0.161
Kurtosis: 3.218 Cond. No. 97.9
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.