In [1]:
load(url("http://www.openintro.org/stat/data/evals.RData"))
In [2]:
summary(evals)
Out[2]:
In [5]:
hist(evals$score)
In [8]:
plot(jitter(evals$score) ~ jitter(evals$bty_avg))
In [14]:
m_bty = lm(score ~ bty_avg,data=evals)
plot(m_bty)
abline(m_bty)
In [15]:
summary(m_bty)
Out[15]:
In [16]:
plot(evals$bty_avg ~ evals$bty_f1lower)
cor(evals$bty_avg, evals$bty_f1lower)
Out[16]:
In [22]:
plot(m_bty$residuals ~ evals$bty_avg)
In [26]:
hist(m_bty$residuals)
qqnorm(m_bty$residuals)
qqline(m_bty$residuals)
plot(m_bty$residuals)
In [27]:
plot(evals[,13:19])
In [19]:
m_bty_gen = lm(score ~ bty_avg + gender , data=evals)
summary(m_bty_gen)
Out[19]:
In [28]:
multiLines(m_bty_gen)
In [30]:
m_bty_rank = lm(score ~ bty_avg + rank, data=evals)
summary(m_bty_rank)
Out[30]:
In [31]:
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg, data = evals)
summary(m_full)
Out[31]:
In [32]:
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg, data = evals)
summary(m_full)
Out[32]:
In [38]:
m1 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg, data = evals)
summary(m1)$adj.r.squared
Out[38]:
In [36]:
m2 <- lm(score ~ gender + language + age + cls_perc_eval
+ cbls_students + cls_level + cls_profs + cls_credits + bty_avg, data = evals)
summary(m2)$adj.r.squared
Out[36]:
In [43]:
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg, data = evals)
summary(m_full)$adj.r.squared
Out[43]:
In [44]:
#bty_average
m3 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits, data = evals)
summary(m3)$adj.r.squared
Out[44]:
In [45]:
#cls_profs
m4 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg, data = evals)
summary(m4)$adj.r.squared
Out[45]:
In [47]:
#cls_students
m5 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_level + cls_profs + cls_credits + bty_avg, data = evals)
summary(m5)$adj.r.squared
Out[47]:
In [48]:
#rank
m6 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg, data = evals)
summary(m6)$adj.r.squared
Out[48]:
In [ ]: