In [5]:
import pandas as pd
import numpy as np
In [ ]:
from keras.models import load_model
model = load_model('./resnet50_FT38_CW_STGTrain/checkpoint/weights.000-0.0327.hdf5')
In [ ]:
for i, layer in enumerate(model.layers):
print(i, layer.name)
In [100]:
df = pd.DataFrame(np.random.randn(5,3),index=range(0,10,2),columns=list('ABC'))
In [101]:
df
Out[101]:
In [102]:
df = df.loc[df['A']>1]
In [103]:
df
Out[103]:
In [104]:
df.shape
Out[104]:
In [105]:
df.index[0]
Out[105]:
In [106]:
df.at[df.index[0],'A']
Out[106]:
In [107]:
df.loc[df.index[0],['B','C']]
Out[107]:
In [108]:
test_pred_df = pd.DataFrame(columns=['B','C'])
In [109]:
test_pred_df.loc[len(test_pred_df)]=df.loc[df.index[0],['B','C']]
In [110]:
test_pred_df
Out[110]:
In [ ]: