Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:

22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, 35=243 42=16, 43=64, 44=256, 45=1024 52=25, 53=125, 54=625, 55=3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?


In [1]:
require 'set'


Out[1]:
true

In [7]:
def distinct_powers(a, b)
  result = Set.new  

  (2..a).each do |x|
    (2..b).each do |y|
      result.add x**y
    end
  end

  return result
end

distinct_powers(5, 5)


Out[7]:
#<Set: {4, 8, 16, 32, 9, 27, 81, 243, 64, 256, 1024, 25, 125, 625, 3125}>

In [10]:
distinct_powers(100, 100).count


Out[10]:
9183

In [ ]: