In [14]:
import gzip
import pickle
import numpy
import timeit
import theano
In [15]:
def shared_dataset(data_xy, borrow=True):
data_x, data_y = data_xy
shared_x = theano.shared(numpy.asarray(data_x,
dtype=theano.config.floatX),
borrow=borrow)
shared_y = theano.shared(numpy.asarray(data_y,
dtype=theano.config.floatX),
borrow=borrow)
return shared_x, theano.tensor.cast(shared_y, 'int32')
In [31]:
start_time = timeit.default_timer()
DATA_PATH = "/Users/myt007/git/svrg/ni/"
DATA_PATH = ""
train_x_raw = gzip.open(DATA_PATH+"train_x.txt.gz", 'rb')
train_x = pickle.load(train_x_raw)
train_y_raw = gzip.open(DATA_PATH+"train_y.txt.gz", 'rb')
train_y = pickle.load(train_y_raw)
test_x_raw = gzip.open(DATA_PATH+"test_x.txt.gz", 'rb')
test_x = pickle.load(test_x_raw)
test_y_raw = gzip.open(DATA_PATH+"test_y.txt.gz", 'rb')
test_y = pickle.load(test_y_raw)
In [29]:
print(train_x.shape)
print(train_y.shape)
print(test_x.shape)
print(test_y.shape)
In [26]:
train_x.dtype
Out[26]:
In [17]:
train_set = (train_x, train_y)
valid_set = (train_x, train_y)
test_set = (test_x, test_y)
train_set_x, train_set_y = shared_dataset(train_set)
valid_set_x, valid_set_y = shared_dataset(valid_set)
test_set_x, test_set_y = shared_dataset(test_set)
In [18]:
Out[18]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: