In [89]:
%matplotlib inline

import pandas as pd
import matplotlib.pyplot as plt

plt.style.use('seaborn-notebook')

In [115]:
!ls data/*.csv


data/amzn-2016-01-01_2017-06-16.csv  data/vlgea-2016-01-01_2017-06-16.csv
data/kr-2016-01-01_2017-06-16.csv    data/wfm-2016-01-01_2017-06-16.csv
data/ngvc-2016-01-01_2017-06-16.csv  data/wmk-2016-01-01_2017-06-16.csv
data/sfm-2016-01-01_2017-06-16.csv   data/wmt-2016-01-01_2017-06-16.csv

In [119]:
dfs = []

for symbol in [
    'kr',
    'ngvc',
    'sfm',
    'vlgea',
    'wfm',
    'wmk',
    'wmt',
]:
    df = pd.read_csv('./data/{}-2016-01-01_2017-06-16.csv'.format(symbol),
                     parse_dates=['Date'], usecols=['Date', 'Volume'], index_col=['Date'])
    df = df.rename(columns={'Volume': symbol.upper()})
    
    dfs.append(df)

df = pd.concat(dfs, axis=1)
df = df.sort_index(ascending=True)

df.head()


Out[119]:
KR NGVC SFM VLGEA WFM WMK WMT
Date
2016-01-04 9917582 65443 2313382 40464 4159849 64808 11926062
2016-01-05 7329300 43542 3887346 37950 3490645 42554 13325958
2016-01-06 9802706 111936 11009063 29714 5741480 41952 16564620
2016-01-07 9434006 73349 3584302 29358 5309019 73626 26430005
2016-01-08 8231126 102829 2336274 29510 4021226 48532 17767864

In [118]:
df.loc['2017-05-01':].plot()


Out[118]:
<matplotlib.axes._subplots.AxesSubplot at 0x1158a8a90>

In [ ]: