Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'
import helper

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7f9ac0358390>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7f9ac027ff28>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    input_real = tf.placeholder(tf.float32, [None, image_width, image_height, image_channels], name='input_real')
    input_z = tf.placeholder(tf.float32, [None, z_dim], name='input_z')
    learning_rate = tf.placeholder(tf.float32, None, name='learning_rate')
    
    return input_real, input_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).


In [6]:
def leaky_relu(x, alpha=0.2):
    return tf.maximum(alpha*x, x)

In [7]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    with tf.variable_scope('discriminator', reuse=reuse):
        init_kernel = tf.contrib.layers.xavier_initializer()
        # First layer: convolutional 28*28*output_channel_dim -> 14*14*64
        x1 = tf.layers.conv2d(images, 32, 5, strides=2, padding='same',
                              kernel_initializer=init_kernel) 
        x1 = leaky_relu(x1)
        
        # Second layer: convolutional 7*7*128
        x2 = tf.layers.conv2d(x1, 64, 5, strides=2, padding='same',
                              kernel_initializer=init_kernel)
        x2 = tf.layers.batch_normalization(x2, training=True)
        x2 = leaky_relu(x2)

        # Third layer: convolutional 4*4*256
        x3 = tf.layers.conv2d(x2, 128, 5, strides=2, padding='same',
                              kernel_initializer=init_kernel)
        x3 = tf.layers.batch_normalization(x3, training=True)
        x3 = leaky_relu(x3)
        x3 = tf.nn.dropout(x3, keep_prob=0.9)

        # Third layer: flatten then fully connected
        flat = tf.reshape(x3, (-1, 4*4*128))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
        return out, logits   

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [8]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    with tf.variable_scope('generator', reuse=not is_train):
        # First layer: fully connected
        x1 = tf.layers.dense(z, 4*4*512, activation=None)
        x1 = tf.reshape(x1, (-1,4,4,512))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        x1 = leaky_relu(x1)

        # Second layer: convolutional transpose 8*8*256
        x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        x2 = leaky_relu(x2)

        # Second layer: convolutional transpose 16*16*128
        x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=is_train)
        x3 = leaky_relu(x3)
        if is_train:
            x3 = tf.nn.dropout(x3, keep_prob=0.5)
        x3 = tf.image.resize_images(x3, [14,14])

        # Third layer: convolutional transpose 28*28*output_channel
        logits = tf.layers.conv2d_transpose(x3, out_channel_dim, 5, strides=2, padding='same')
        out = tf.tanh(logits)
        return out

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [9]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    smooth = 0.1
    g_model = generator(input_z, out_channel_dim, is_train=True)
    d_model_real, d_logits_real = discriminator(input_real, reuse=False)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(\
                    tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, 
                                                            labels=tf.ones_like(d_logits_real) * (1 - smooth)))
    d_loss_fake = tf.reduce_mean(\
                    tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, 
                                                            labels=tf.zeros_like(d_logits_fake)))
    d_loss = d_loss_real + d_loss_fake
    g_loss = tf.reduce_mean(\
                    tf.nn.sigmoid_cross_entropy_with_logits(logits=d_loss_fake,
                                                            labels=tf.ones_like(d_loss_fake)))
    
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [10]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)    
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)    
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [11]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [12]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    steps = 0
    num_batches = data_shape[0] // batch_size
    
    output_channel_dim = data_shape[3]
    input_real, input_z, lr = model_inputs(*data_shape[1:3], output_channel_dim, z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, output_channel_dim)
    d_train_opt, g_train_opt = model_opt(d_loss, g_loss, lr, beta1)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for idx, batch_images in enumerate(get_batches(batch_size)):
                steps += 1
                
                # TODO: Train Model
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                # Because the value is [-0.5, 0.5]
                batch_image_real = batch_images * 2
                
                # Run optimizers
                _ = sess.run(d_train_opt, feed_dict={input_real: batch_image_real, 
                                                     input_z: batch_z,
                                                     lr: learning_rate})
                _ = sess.run(g_train_opt, feed_dict={input_real: batch_image_real,
                                                     input_z: batch_z,
                                                     lr: learning_rate})
                
                if steps % 10 == 0:
                    train_loss_d = d_loss.eval({input_real: batch_image_real, input_z: batch_z})
                    train_loss_g = g_loss.eval({input_z: batch_z})
                    print('Epoch {}/{}...'.format(epoch_i+1, epoch_count),
                          'Batch {}/{}...'.format(idx, num_batches),
                          'Discriminator Loss: {:.4f}...'.format(train_loss_d),
                          'Generator Loss: {:.4f}...'.format(train_loss_g))
                    
                if steps % 100 == 0:
                    show_generator_output(sess, 25, input_z, output_channel_dim, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [13]:
batch_size = 32
z_dim = 100
learning_rate = 0.0001
beta1 = 0.6

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Batch 9/1875... Discriminator Loss: 2.3308... Generator Loss: 0.1527...
Epoch 1/2... Batch 19/1875... Discriminator Loss: 0.9410... Generator Loss: 0.4580...
Epoch 1/2... Batch 29/1875... Discriminator Loss: 0.8294... Generator Loss: 0.5491...
Epoch 1/2... Batch 39/1875... Discriminator Loss: 0.8723... Generator Loss: 0.5195...
Epoch 1/2... Batch 49/1875... Discriminator Loss: 1.3689... Generator Loss: 0.4323...
Epoch 1/2... Batch 59/1875... Discriminator Loss: 1.7767... Generator Loss: 0.3415...
Epoch 1/2... Batch 69/1875... Discriminator Loss: 0.9851... Generator Loss: 0.5430...
Epoch 1/2... Batch 79/1875... Discriminator Loss: 1.0231... Generator Loss: 0.5501...
Epoch 1/2... Batch 89/1875... Discriminator Loss: 1.0160... Generator Loss: 0.5101...
Epoch 1/2... Batch 99/1875... Discriminator Loss: 0.7836... Generator Loss: 0.5872...
Epoch 1/2... Batch 109/1875... Discriminator Loss: 0.9099... Generator Loss: 0.5276...
Epoch 1/2... Batch 119/1875... Discriminator Loss: 0.6113... Generator Loss: 0.6032...
Epoch 1/2... Batch 129/1875... Discriminator Loss: 0.7019... Generator Loss: 0.5945...
Epoch 1/2... Batch 139/1875... Discriminator Loss: 0.7210... Generator Loss: 0.5838...
Epoch 1/2... Batch 149/1875... Discriminator Loss: 0.5588... Generator Loss: 0.6152...
Epoch 1/2... Batch 159/1875... Discriminator Loss: 0.8926... Generator Loss: 0.5499...
Epoch 1/2... Batch 169/1875... Discriminator Loss: 0.6759... Generator Loss: 0.6000...
Epoch 1/2... Batch 179/1875... Discriminator Loss: 0.6211... Generator Loss: 0.6018...
Epoch 1/2... Batch 189/1875... Discriminator Loss: 0.7136... Generator Loss: 0.6057...
Epoch 1/2... Batch 199/1875... Discriminator Loss: 0.9090... Generator Loss: 0.5206...
Epoch 1/2... Batch 209/1875... Discriminator Loss: 0.5929... Generator Loss: 0.6009...
Epoch 1/2... Batch 219/1875... Discriminator Loss: 0.8284... Generator Loss: 0.5420...
Epoch 1/2... Batch 229/1875... Discriminator Loss: 0.5832... Generator Loss: 0.6405...
Epoch 1/2... Batch 239/1875... Discriminator Loss: 0.9747... Generator Loss: 0.4921...
Epoch 1/2... Batch 249/1875... Discriminator Loss: 0.6279... Generator Loss: 0.6010...
Epoch 1/2... Batch 259/1875... Discriminator Loss: 0.9145... Generator Loss: 0.4775...
Epoch 1/2... Batch 269/1875... Discriminator Loss: 0.8748... Generator Loss: 0.5755...
Epoch 1/2... Batch 279/1875... Discriminator Loss: 0.5536... Generator Loss: 0.6337...
Epoch 1/2... Batch 289/1875... Discriminator Loss: 0.7655... Generator Loss: 0.6012...
Epoch 1/2... Batch 299/1875... Discriminator Loss: 1.2836... Generator Loss: 0.3776...
Epoch 1/2... Batch 309/1875... Discriminator Loss: 1.0134... Generator Loss: 0.5555...
Epoch 1/2... Batch 319/1875... Discriminator Loss: 0.9448... Generator Loss: 0.5123...
Epoch 1/2... Batch 329/1875... Discriminator Loss: 0.9311... Generator Loss: 0.4701...
Epoch 1/2... Batch 339/1875... Discriminator Loss: 1.0075... Generator Loss: 0.5510...
Epoch 1/2... Batch 349/1875... Discriminator Loss: 0.9720... Generator Loss: 0.5296...
Epoch 1/2... Batch 359/1875... Discriminator Loss: 1.1346... Generator Loss: 0.4017...
Epoch 1/2... Batch 369/1875... Discriminator Loss: 1.0410... Generator Loss: 0.4993...
Epoch 1/2... Batch 379/1875... Discriminator Loss: 0.9862... Generator Loss: 0.5245...
Epoch 1/2... Batch 389/1875... Discriminator Loss: 0.8972... Generator Loss: 0.5363...
Epoch 1/2... Batch 399/1875... Discriminator Loss: 1.0171... Generator Loss: 0.4627...
Epoch 1/2... Batch 409/1875... Discriminator Loss: 0.9599... Generator Loss: 0.5146...
Epoch 1/2... Batch 419/1875... Discriminator Loss: 0.8904... Generator Loss: 0.5721...
Epoch 1/2... Batch 429/1875... Discriminator Loss: 0.8546... Generator Loss: 0.5123...
Epoch 1/2... Batch 439/1875... Discriminator Loss: 1.0678... Generator Loss: 0.5781...
Epoch 1/2... Batch 449/1875... Discriminator Loss: 0.9606... Generator Loss: 0.5030...
Epoch 1/2... Batch 459/1875... Discriminator Loss: 0.8914... Generator Loss: 0.5666...
Epoch 1/2... Batch 469/1875... Discriminator Loss: 0.9885... Generator Loss: 0.4599...
Epoch 1/2... Batch 479/1875... Discriminator Loss: 1.3456... Generator Loss: 0.4087...
Epoch 1/2... Batch 489/1875... Discriminator Loss: 0.6386... Generator Loss: 0.6199...
Epoch 1/2... Batch 499/1875... Discriminator Loss: 1.2926... Generator Loss: 0.4729...
Epoch 1/2... Batch 509/1875... Discriminator Loss: 0.8375... Generator Loss: 0.5272...
Epoch 1/2... Batch 519/1875... Discriminator Loss: 0.9972... Generator Loss: 0.5540...
Epoch 1/2... Batch 529/1875... Discriminator Loss: 0.9713... Generator Loss: 0.5631...
Epoch 1/2... Batch 539/1875... Discriminator Loss: 0.9198... Generator Loss: 0.4951...
Epoch 1/2... Batch 549/1875... Discriminator Loss: 0.8377... Generator Loss: 0.5274...
Epoch 1/2... Batch 559/1875... Discriminator Loss: 0.8958... Generator Loss: 0.5528...
Epoch 1/2... Batch 569/1875... Discriminator Loss: 0.8131... Generator Loss: 0.5489...
Epoch 1/2... Batch 579/1875... Discriminator Loss: 1.0649... Generator Loss: 0.4396...
Epoch 1/2... Batch 589/1875... Discriminator Loss: 0.8702... Generator Loss: 0.5837...
Epoch 1/2... Batch 599/1875... Discriminator Loss: 1.5120... Generator Loss: 0.2803...
Epoch 1/2... Batch 609/1875... Discriminator Loss: 0.9771... Generator Loss: 0.5366...
Epoch 1/2... Batch 619/1875... Discriminator Loss: 0.8210... Generator Loss: 0.5206...
Epoch 1/2... Batch 629/1875... Discriminator Loss: 0.9314... Generator Loss: 0.4650...
Epoch 1/2... Batch 639/1875... Discriminator Loss: 0.9440... Generator Loss: 0.4720...
Epoch 1/2... Batch 649/1875... Discriminator Loss: 0.8880... Generator Loss: 0.5649...
Epoch 1/2... Batch 659/1875... Discriminator Loss: 0.9007... Generator Loss: 0.5198...
Epoch 1/2... Batch 669/1875... Discriminator Loss: 0.9126... Generator Loss: 0.5432...
Epoch 1/2... Batch 679/1875... Discriminator Loss: 0.8762... Generator Loss: 0.5794...
Epoch 1/2... Batch 689/1875... Discriminator Loss: 0.8933... Generator Loss: 0.4975...
Epoch 1/2... Batch 699/1875... Discriminator Loss: 0.9143... Generator Loss: 0.4448...
Epoch 1/2... Batch 709/1875... Discriminator Loss: 0.8341... Generator Loss: 0.5545...
Epoch 1/2... Batch 719/1875... Discriminator Loss: 0.9885... Generator Loss: 0.5760...
Epoch 1/2... Batch 729/1875... Discriminator Loss: 0.9084... Generator Loss: 0.5243...
Epoch 1/2... Batch 739/1875... Discriminator Loss: 0.8510... Generator Loss: 0.6302...
Epoch 1/2... Batch 749/1875... Discriminator Loss: 0.8144... Generator Loss: 0.5340...
Epoch 1/2... Batch 759/1875... Discriminator Loss: 0.8145... Generator Loss: 0.5201...
Epoch 1/2... Batch 769/1875... Discriminator Loss: 0.8424... Generator Loss: 0.5872...
Epoch 1/2... Batch 779/1875... Discriminator Loss: 0.9603... Generator Loss: 0.4964...
Epoch 1/2... Batch 789/1875... Discriminator Loss: 0.6908... Generator Loss: 0.5591...
Epoch 1/2... Batch 799/1875... Discriminator Loss: 1.0063... Generator Loss: 0.4443...
Epoch 1/2... Batch 809/1875... Discriminator Loss: 0.7525... Generator Loss: 0.5830...
Epoch 1/2... Batch 819/1875... Discriminator Loss: 0.7609... Generator Loss: 0.5602...
Epoch 1/2... Batch 829/1875... Discriminator Loss: 0.7676... Generator Loss: 0.5719...
Epoch 1/2... Batch 839/1875... Discriminator Loss: 0.7757... Generator Loss: 0.5552...
Epoch 1/2... Batch 849/1875... Discriminator Loss: 0.8352... Generator Loss: 0.6220...
Epoch 1/2... Batch 859/1875... Discriminator Loss: 0.9912... Generator Loss: 0.4127...
Epoch 1/2... Batch 869/1875... Discriminator Loss: 0.7104... Generator Loss: 0.5580...
Epoch 1/2... Batch 879/1875... Discriminator Loss: 1.1361... Generator Loss: 0.4210...
Epoch 1/2... Batch 889/1875... Discriminator Loss: 0.7183... Generator Loss: 0.6223...
Epoch 1/2... Batch 899/1875... Discriminator Loss: 0.8871... Generator Loss: 0.5656...
Epoch 1/2... Batch 909/1875... Discriminator Loss: 0.8818... Generator Loss: 0.4816...
Epoch 1/2... Batch 919/1875... Discriminator Loss: 1.2617... Generator Loss: 0.4267...
Epoch 1/2... Batch 929/1875... Discriminator Loss: 1.0323... Generator Loss: 0.4325...
Epoch 1/2... Batch 939/1875... Discriminator Loss: 0.8331... Generator Loss: 0.5346...
Epoch 1/2... Batch 949/1875... Discriminator Loss: 0.9649... Generator Loss: 0.4621...
Epoch 1/2... Batch 959/1875... Discriminator Loss: 0.8451... Generator Loss: 0.5550...
Epoch 1/2... Batch 969/1875... Discriminator Loss: 0.9881... Generator Loss: 0.4839...
Epoch 1/2... Batch 979/1875... Discriminator Loss: 1.0457... Generator Loss: 0.4969...
Epoch 1/2... Batch 989/1875... Discriminator Loss: 0.8266... Generator Loss: 0.5195...
Epoch 1/2... Batch 999/1875... Discriminator Loss: 0.9721... Generator Loss: 0.5568...
Epoch 1/2... Batch 1009/1875... Discriminator Loss: 0.9390... Generator Loss: 0.4732...
Epoch 1/2... Batch 1019/1875... Discriminator Loss: 0.9491... Generator Loss: 0.5069...
Epoch 1/2... Batch 1029/1875... Discriminator Loss: 0.9037... Generator Loss: 0.4762...
Epoch 1/2... Batch 1039/1875... Discriminator Loss: 0.8703... Generator Loss: 0.5090...
Epoch 1/2... Batch 1049/1875... Discriminator Loss: 0.8216... Generator Loss: 0.5920...
Epoch 1/2... Batch 1059/1875... Discriminator Loss: 0.9263... Generator Loss: 0.5026...
Epoch 1/2... Batch 1069/1875... Discriminator Loss: 1.2116... Generator Loss: 0.3845...
Epoch 1/2... Batch 1079/1875... Discriminator Loss: 0.9124... Generator Loss: 0.5125...
Epoch 1/2... Batch 1089/1875... Discriminator Loss: 0.9436... Generator Loss: 0.4855...
Epoch 1/2... Batch 1099/1875... Discriminator Loss: 1.0707... Generator Loss: 0.4104...
Epoch 1/2... Batch 1109/1875... Discriminator Loss: 0.9642... Generator Loss: 0.5021...
Epoch 1/2... Batch 1119/1875... Discriminator Loss: 1.1005... Generator Loss: 0.4181...
Epoch 1/2... Batch 1129/1875... Discriminator Loss: 0.7427... Generator Loss: 0.5672...
Epoch 1/2... Batch 1139/1875... Discriminator Loss: 1.0336... Generator Loss: 0.4313...
Epoch 1/2... Batch 1149/1875... Discriminator Loss: 1.0295... Generator Loss: 0.4492...
Epoch 1/2... Batch 1159/1875... Discriminator Loss: 1.0350... Generator Loss: 0.3988...
Epoch 1/2... Batch 1169/1875... Discriminator Loss: 1.1042... Generator Loss: 0.4407...
Epoch 1/2... Batch 1179/1875... Discriminator Loss: 1.0142... Generator Loss: 0.4627...
Epoch 1/2... Batch 1189/1875... Discriminator Loss: 0.8889... Generator Loss: 0.6028...
Epoch 1/2... Batch 1199/1875... Discriminator Loss: 0.9805... Generator Loss: 0.4632...
Epoch 1/2... Batch 1209/1875... Discriminator Loss: 0.9955... Generator Loss: 0.4528...
Epoch 1/2... Batch 1219/1875... Discriminator Loss: 0.8339... Generator Loss: 0.5204...
Epoch 1/2... Batch 1229/1875... Discriminator Loss: 0.8811... Generator Loss: 0.5861...
Epoch 1/2... Batch 1239/1875... Discriminator Loss: 1.0094... Generator Loss: 0.5657...
Epoch 1/2... Batch 1249/1875... Discriminator Loss: 1.0340... Generator Loss: 0.4649...
Epoch 1/2... Batch 1259/1875... Discriminator Loss: 1.4766... Generator Loss: 0.3128...
Epoch 1/2... Batch 1269/1875... Discriminator Loss: 0.9135... Generator Loss: 0.5105...
Epoch 1/2... Batch 1279/1875... Discriminator Loss: 0.7689... Generator Loss: 0.6167...
Epoch 1/2... Batch 1289/1875... Discriminator Loss: 0.9475... Generator Loss: 0.5837...
Epoch 1/2... Batch 1299/1875... Discriminator Loss: 0.9912... Generator Loss: 0.4702...
Epoch 1/2... Batch 1309/1875... Discriminator Loss: 0.7331... Generator Loss: 0.5887...
Epoch 1/2... Batch 1319/1875... Discriminator Loss: 1.3243... Generator Loss: 0.3274...
Epoch 1/2... Batch 1329/1875... Discriminator Loss: 0.8970... Generator Loss: 0.5820...
Epoch 1/2... Batch 1339/1875... Discriminator Loss: 0.9533... Generator Loss: 0.4641...
Epoch 1/2... Batch 1349/1875... Discriminator Loss: 0.8185... Generator Loss: 0.5391...
Epoch 1/2... Batch 1359/1875... Discriminator Loss: 0.9002... Generator Loss: 0.5586...
Epoch 1/2... Batch 1369/1875... Discriminator Loss: 0.9055... Generator Loss: 0.5610...
Epoch 1/2... Batch 1379/1875... Discriminator Loss: 0.8167... Generator Loss: 0.5528...
Epoch 1/2... Batch 1389/1875... Discriminator Loss: 0.9258... Generator Loss: 0.5350...
Epoch 1/2... Batch 1399/1875... Discriminator Loss: 1.0645... Generator Loss: 0.4127...
Epoch 1/2... Batch 1409/1875... Discriminator Loss: 1.4608... Generator Loss: 0.2912...
Epoch 1/2... Batch 1419/1875... Discriminator Loss: 0.8466... Generator Loss: 0.5884...
Epoch 1/2... Batch 1429/1875... Discriminator Loss: 0.9267... Generator Loss: 0.4717...
Epoch 1/2... Batch 1439/1875... Discriminator Loss: 1.0888... Generator Loss: 0.4361...
Epoch 1/2... Batch 1449/1875... Discriminator Loss: 1.0907... Generator Loss: 0.4333...
Epoch 1/2... Batch 1459/1875... Discriminator Loss: 0.8664... Generator Loss: 0.6169...
Epoch 1/2... Batch 1469/1875... Discriminator Loss: 1.2338... Generator Loss: 0.3534...
Epoch 1/2... Batch 1479/1875... Discriminator Loss: 0.9014... Generator Loss: 0.5107...
Epoch 1/2... Batch 1489/1875... Discriminator Loss: 0.7576... Generator Loss: 0.5753...
Epoch 1/2... Batch 1499/1875... Discriminator Loss: 0.8554... Generator Loss: 0.5046...
Epoch 1/2... Batch 1509/1875... Discriminator Loss: 0.9796... Generator Loss: 0.4724...
Epoch 1/2... Batch 1519/1875... Discriminator Loss: 1.1824... Generator Loss: 0.4239...
Epoch 1/2... Batch 1529/1875... Discriminator Loss: 1.0803... Generator Loss: 0.4671...
Epoch 1/2... Batch 1539/1875... Discriminator Loss: 1.0023... Generator Loss: 0.4826...
Epoch 1/2... Batch 1549/1875... Discriminator Loss: 0.9381... Generator Loss: 0.5420...
Epoch 1/2... Batch 1559/1875... Discriminator Loss: 1.0322... Generator Loss: 0.6383...
Epoch 1/2... Batch 1569/1875... Discriminator Loss: 0.8442... Generator Loss: 0.5925...
Epoch 1/2... Batch 1579/1875... Discriminator Loss: 0.7574... Generator Loss: 0.5156...
Epoch 1/2... Batch 1589/1875... Discriminator Loss: 1.3121... Generator Loss: 0.3148...
Epoch 1/2... Batch 1599/1875... Discriminator Loss: 0.8787... Generator Loss: 0.6030...
Epoch 1/2... Batch 1609/1875... Discriminator Loss: 1.1234... Generator Loss: 0.4057...
Epoch 1/2... Batch 1619/1875... Discriminator Loss: 0.9137... Generator Loss: 0.5370...
Epoch 1/2... Batch 1629/1875... Discriminator Loss: 0.8791... Generator Loss: 0.5778...
Epoch 1/2... Batch 1639/1875... Discriminator Loss: 0.8304... Generator Loss: 0.5933...
Epoch 1/2... Batch 1649/1875... Discriminator Loss: 0.9303... Generator Loss: 0.5415...
Epoch 1/2... Batch 1659/1875... Discriminator Loss: 0.9295... Generator Loss: 0.5162...
Epoch 1/2... Batch 1669/1875... Discriminator Loss: 0.9836... Generator Loss: 0.4578...
Epoch 1/2... Batch 1679/1875... Discriminator Loss: 0.9448... Generator Loss: 0.5235...
Epoch 1/2... Batch 1689/1875... Discriminator Loss: 0.9100... Generator Loss: 0.5509...
Epoch 1/2... Batch 1699/1875... Discriminator Loss: 1.0775... Generator Loss: 0.4595...
Epoch 1/2... Batch 1709/1875... Discriminator Loss: 0.7424... Generator Loss: 0.5956...
Epoch 1/2... Batch 1719/1875... Discriminator Loss: 1.0617... Generator Loss: 0.5197...
Epoch 1/2... Batch 1729/1875... Discriminator Loss: 0.9400... Generator Loss: 0.6017...
Epoch 1/2... Batch 1739/1875... Discriminator Loss: 1.0429... Generator Loss: 0.4116...
Epoch 1/2... Batch 1749/1875... Discriminator Loss: 0.9716... Generator Loss: 0.5270...
Epoch 1/2... Batch 1759/1875... Discriminator Loss: 0.9593... Generator Loss: 0.4302...
Epoch 1/2... Batch 1769/1875... Discriminator Loss: 0.8428... Generator Loss: 0.5794...
Epoch 1/2... Batch 1779/1875... Discriminator Loss: 0.7864... Generator Loss: 0.5697...
Epoch 1/2... Batch 1789/1875... Discriminator Loss: 0.8951... Generator Loss: 0.4809...
Epoch 1/2... Batch 1799/1875... Discriminator Loss: 1.0915... Generator Loss: 0.4173...
Epoch 1/2... Batch 1809/1875... Discriminator Loss: 1.1013... Generator Loss: 0.4471...
Epoch 1/2... Batch 1819/1875... Discriminator Loss: 1.1830... Generator Loss: 0.4340...
Epoch 1/2... Batch 1829/1875... Discriminator Loss: 0.7537... Generator Loss: 0.5291...
Epoch 1/2... Batch 1839/1875... Discriminator Loss: 1.2520... Generator Loss: 0.3782...
Epoch 1/2... Batch 1849/1875... Discriminator Loss: 0.8811... Generator Loss: 0.5528...
Epoch 1/2... Batch 1859/1875... Discriminator Loss: 0.7841... Generator Loss: 0.5912...
Epoch 1/2... Batch 1869/1875... Discriminator Loss: 0.7297... Generator Loss: 0.5514...
Epoch 2/2... Batch 4/1875... Discriminator Loss: 0.7984... Generator Loss: 0.4888...
Epoch 2/2... Batch 14/1875... Discriminator Loss: 1.3307... Generator Loss: 0.3777...
Epoch 2/2... Batch 24/1875... Discriminator Loss: 0.9560... Generator Loss: 0.5086...
Epoch 2/2... Batch 34/1875... Discriminator Loss: 1.3347... Generator Loss: 0.3625...
Epoch 2/2... Batch 44/1875... Discriminator Loss: 0.6914... Generator Loss: 0.5548...
Epoch 2/2... Batch 54/1875... Discriminator Loss: 0.9266... Generator Loss: 0.4999...
Epoch 2/2... Batch 64/1875... Discriminator Loss: 0.6565... Generator Loss: 0.6093...
Epoch 2/2... Batch 74/1875... Discriminator Loss: 0.9611... Generator Loss: 0.4947...
Epoch 2/2... Batch 84/1875... Discriminator Loss: 0.9952... Generator Loss: 0.5747...
Epoch 2/2... Batch 94/1875... Discriminator Loss: 0.7303... Generator Loss: 0.5558...
Epoch 2/2... Batch 104/1875... Discriminator Loss: 0.7590... Generator Loss: 0.5836...
Epoch 2/2... Batch 114/1875... Discriminator Loss: 0.8140... Generator Loss: 0.5202...
Epoch 2/2... Batch 124/1875... Discriminator Loss: 0.9372... Generator Loss: 0.4376...
Epoch 2/2... Batch 134/1875... Discriminator Loss: 0.8932... Generator Loss: 0.5117...
Epoch 2/2... Batch 144/1875... Discriminator Loss: 0.7628... Generator Loss: 0.5972...
Epoch 2/2... Batch 154/1875... Discriminator Loss: 0.7273... Generator Loss: 0.5797...
Epoch 2/2... Batch 164/1875... Discriminator Loss: 0.7744... Generator Loss: 0.6057...
Epoch 2/2... Batch 174/1875... Discriminator Loss: 0.9049... Generator Loss: 0.5191...
Epoch 2/2... Batch 184/1875... Discriminator Loss: 0.9237... Generator Loss: 0.5377...
Epoch 2/2... Batch 194/1875... Discriminator Loss: 0.8076... Generator Loss: 0.5900...
Epoch 2/2... Batch 204/1875... Discriminator Loss: 0.9272... Generator Loss: 0.5144...
Epoch 2/2... Batch 214/1875... Discriminator Loss: 0.9399... Generator Loss: 0.4685...
Epoch 2/2... Batch 224/1875... Discriminator Loss: 0.9373... Generator Loss: 0.4616...
Epoch 2/2... Batch 234/1875... Discriminator Loss: 0.7990... Generator Loss: 0.5381...
Epoch 2/2... Batch 244/1875... Discriminator Loss: 1.0995... Generator Loss: 0.4570...
Epoch 2/2... Batch 254/1875... Discriminator Loss: 0.7500... Generator Loss: 0.6066...
Epoch 2/2... Batch 264/1875... Discriminator Loss: 0.8183... Generator Loss: 0.5130...
Epoch 2/2... Batch 274/1875... Discriminator Loss: 0.8605... Generator Loss: 0.5282...
Epoch 2/2... Batch 284/1875... Discriminator Loss: 1.0224... Generator Loss: 0.4591...
Epoch 2/2... Batch 294/1875... Discriminator Loss: 0.8546... Generator Loss: 0.5360...
Epoch 2/2... Batch 304/1875... Discriminator Loss: 0.8119... Generator Loss: 0.5308...
Epoch 2/2... Batch 314/1875... Discriminator Loss: 1.1472... Generator Loss: 0.3835...
Epoch 2/2... Batch 324/1875... Discriminator Loss: 0.9979... Generator Loss: 0.4958...
Epoch 2/2... Batch 334/1875... Discriminator Loss: 1.0186... Generator Loss: 0.4274...
Epoch 2/2... Batch 344/1875... Discriminator Loss: 0.6921... Generator Loss: 0.5617...
Epoch 2/2... Batch 354/1875... Discriminator Loss: 0.8242... Generator Loss: 0.5054...
Epoch 2/2... Batch 364/1875... Discriminator Loss: 0.8186... Generator Loss: 0.5954...
Epoch 2/2... Batch 374/1875... Discriminator Loss: 0.7201... Generator Loss: 0.5972...
Epoch 2/2... Batch 384/1875... Discriminator Loss: 0.7616... Generator Loss: 0.5438...
Epoch 2/2... Batch 394/1875... Discriminator Loss: 0.9482... Generator Loss: 0.4769...
Epoch 2/2... Batch 404/1875... Discriminator Loss: 0.8143... Generator Loss: 0.4703...
Epoch 2/2... Batch 414/1875... Discriminator Loss: 0.8389... Generator Loss: 0.5605...
Epoch 2/2... Batch 424/1875... Discriminator Loss: 0.7316... Generator Loss: 0.5810...
Epoch 2/2... Batch 434/1875... Discriminator Loss: 0.8427... Generator Loss: 0.4873...
Epoch 2/2... Batch 444/1875... Discriminator Loss: 1.4098... Generator Loss: 0.3068...
Epoch 2/2... Batch 454/1875... Discriminator Loss: 0.8062... Generator Loss: 0.5229...
Epoch 2/2... Batch 464/1875... Discriminator Loss: 0.7158... Generator Loss: 0.6214...
Epoch 2/2... Batch 474/1875... Discriminator Loss: 0.7845... Generator Loss: 0.5289...
Epoch 2/2... Batch 484/1875... Discriminator Loss: 1.3484... Generator Loss: 0.3159...
Epoch 2/2... Batch 494/1875... Discriminator Loss: 1.1174... Generator Loss: 0.3936...
Epoch 2/2... Batch 504/1875... Discriminator Loss: 0.8969... Generator Loss: 0.4869...
Epoch 2/2... Batch 514/1875... Discriminator Loss: 0.5820... Generator Loss: 0.6432...
Epoch 2/2... Batch 524/1875... Discriminator Loss: 0.8553... Generator Loss: 0.5614...
Epoch 2/2... Batch 534/1875... Discriminator Loss: 0.8543... Generator Loss: 0.4575...
Epoch 2/2... Batch 544/1875... Discriminator Loss: 0.7181... Generator Loss: 0.6091...
Epoch 2/2... Batch 554/1875... Discriminator Loss: 1.0301... Generator Loss: 0.4009...
Epoch 2/2... Batch 564/1875... Discriminator Loss: 0.7598... Generator Loss: 0.6073...
Epoch 2/2... Batch 574/1875... Discriminator Loss: 0.6641... Generator Loss: 0.5908...
Epoch 2/2... Batch 584/1875... Discriminator Loss: 0.7499... Generator Loss: 0.5278...
Epoch 2/2... Batch 594/1875... Discriminator Loss: 0.6902... Generator Loss: 0.5432...
Epoch 2/2... Batch 604/1875... Discriminator Loss: 0.9159... Generator Loss: 0.5380...
Epoch 2/2... Batch 614/1875... Discriminator Loss: 0.8556... Generator Loss: 0.5589...
Epoch 2/2... Batch 624/1875... Discriminator Loss: 0.9361... Generator Loss: 0.5037...
Epoch 2/2... Batch 634/1875... Discriminator Loss: 0.7608... Generator Loss: 0.5503...
Epoch 2/2... Batch 644/1875... Discriminator Loss: 0.8112... Generator Loss: 0.5985...
Epoch 2/2... Batch 654/1875... Discriminator Loss: 0.7416... Generator Loss: 0.5329...
Epoch 2/2... Batch 664/1875... Discriminator Loss: 0.6837... Generator Loss: 0.6108...
Epoch 2/2... Batch 674/1875... Discriminator Loss: 0.9376... Generator Loss: 0.4203...
Epoch 2/2... Batch 684/1875... Discriminator Loss: 0.6932... Generator Loss: 0.5624...
Epoch 2/2... Batch 694/1875... Discriminator Loss: 0.7049... Generator Loss: 0.5936...
Epoch 2/2... Batch 704/1875... Discriminator Loss: 0.5561... Generator Loss: 0.5988...
Epoch 2/2... Batch 714/1875... Discriminator Loss: 0.9150... Generator Loss: 0.4687...
Epoch 2/2... Batch 724/1875... Discriminator Loss: 0.6751... Generator Loss: 0.6017...
Epoch 2/2... Batch 734/1875... Discriminator Loss: 0.7420... Generator Loss: 0.6361...
Epoch 2/2... Batch 744/1875... Discriminator Loss: 0.6792... Generator Loss: 0.5746...
Epoch 2/2... Batch 754/1875... Discriminator Loss: 0.7359... Generator Loss: 0.6443...
Epoch 2/2... Batch 764/1875... Discriminator Loss: 0.8354... Generator Loss: 0.5439...
Epoch 2/2... Batch 774/1875... Discriminator Loss: 0.7329... Generator Loss: 0.5783...
Epoch 2/2... Batch 784/1875... Discriminator Loss: 0.7098... Generator Loss: 0.5985...
Epoch 2/2... Batch 794/1875... Discriminator Loss: 0.8887... Generator Loss: 0.5219...
Epoch 2/2... Batch 804/1875... Discriminator Loss: 0.7223... Generator Loss: 0.5991...
Epoch 2/2... Batch 814/1875... Discriminator Loss: 0.7736... Generator Loss: 0.6077...
Epoch 2/2... Batch 824/1875... Discriminator Loss: 0.7657... Generator Loss: 0.5382...
Epoch 2/2... Batch 834/1875... Discriminator Loss: 0.8312... Generator Loss: 0.4923...
Epoch 2/2... Batch 844/1875... Discriminator Loss: 0.7017... Generator Loss: 0.5730...
Epoch 2/2... Batch 854/1875... Discriminator Loss: 0.6191... Generator Loss: 0.5769...
Epoch 2/2... Batch 864/1875... Discriminator Loss: 0.6975... Generator Loss: 0.5681...
Epoch 2/2... Batch 874/1875... Discriminator Loss: 0.6579... Generator Loss: 0.5880...
Epoch 2/2... Batch 884/1875... Discriminator Loss: 1.0238... Generator Loss: 0.4233...
Epoch 2/2... Batch 894/1875... Discriminator Loss: 0.7443... Generator Loss: 0.5944...
Epoch 2/2... Batch 904/1875... Discriminator Loss: 1.0015... Generator Loss: 0.4287...
Epoch 2/2... Batch 914/1875... Discriminator Loss: 0.7284... Generator Loss: 0.6059...
Epoch 2/2... Batch 924/1875... Discriminator Loss: 0.6493... Generator Loss: 0.6429...
Epoch 2/2... Batch 934/1875... Discriminator Loss: 0.7553... Generator Loss: 0.5368...
Epoch 2/2... Batch 944/1875... Discriminator Loss: 0.7126... Generator Loss: 0.5923...
Epoch 2/2... Batch 954/1875... Discriminator Loss: 0.6499... Generator Loss: 0.6045...
Epoch 2/2... Batch 964/1875... Discriminator Loss: 0.6931... Generator Loss: 0.5359...
Epoch 2/2... Batch 974/1875... Discriminator Loss: 0.7097... Generator Loss: 0.5624...
Epoch 2/2... Batch 984/1875... Discriminator Loss: 0.7968... Generator Loss: 0.5470...
Epoch 2/2... Batch 994/1875... Discriminator Loss: 0.8182... Generator Loss: 0.4842...
Epoch 2/2... Batch 1004/1875... Discriminator Loss: 0.8226... Generator Loss: 0.6279...
Epoch 2/2... Batch 1014/1875... Discriminator Loss: 0.5632... Generator Loss: 0.6510...
Epoch 2/2... Batch 1024/1875... Discriminator Loss: 0.6884... Generator Loss: 0.5419...
Epoch 2/2... Batch 1034/1875... Discriminator Loss: 0.7224... Generator Loss: 0.6224...
Epoch 2/2... Batch 1044/1875... Discriminator Loss: 0.7585... Generator Loss: 0.6551...
Epoch 2/2... Batch 1054/1875... Discriminator Loss: 0.8274... Generator Loss: 0.5939...
Epoch 2/2... Batch 1064/1875... Discriminator Loss: 1.0184... Generator Loss: 0.4208...
Epoch 2/2... Batch 1074/1875... Discriminator Loss: 0.6953... Generator Loss: 0.5749...
Epoch 2/2... Batch 1084/1875... Discriminator Loss: 0.6384... Generator Loss: 0.6308...
Epoch 2/2... Batch 1094/1875... Discriminator Loss: 0.6059... Generator Loss: 0.6065...
Epoch 2/2... Batch 1104/1875... Discriminator Loss: 0.6120... Generator Loss: 0.5887...
Epoch 2/2... Batch 1114/1875... Discriminator Loss: 0.5698... Generator Loss: 0.6243...
Epoch 2/2... Batch 1124/1875... Discriminator Loss: 0.6073... Generator Loss: 0.6599...
Epoch 2/2... Batch 1134/1875... Discriminator Loss: 0.8772... Generator Loss: 0.5221...
Epoch 2/2... Batch 1144/1875... Discriminator Loss: 0.7416... Generator Loss: 0.5354...
Epoch 2/2... Batch 1154/1875... Discriminator Loss: 0.6604... Generator Loss: 0.6066...
Epoch 2/2... Batch 1164/1875... Discriminator Loss: 0.8033... Generator Loss: 0.5572...
Epoch 2/2... Batch 1174/1875... Discriminator Loss: 0.6934... Generator Loss: 0.5315...
Epoch 2/2... Batch 1184/1875... Discriminator Loss: 0.6134... Generator Loss: 0.5962...
Epoch 2/2... Batch 1194/1875... Discriminator Loss: 1.2571... Generator Loss: 0.4050...
Epoch 2/2... Batch 1204/1875... Discriminator Loss: 0.6106... Generator Loss: 0.6147...
Epoch 2/2... Batch 1214/1875... Discriminator Loss: 0.9505... Generator Loss: 0.4582...
Epoch 2/2... Batch 1224/1875... Discriminator Loss: 0.7441... Generator Loss: 0.5174...
Epoch 2/2... Batch 1234/1875... Discriminator Loss: 0.6852... Generator Loss: 0.6190...
Epoch 2/2... Batch 1244/1875... Discriminator Loss: 0.5965... Generator Loss: 0.6563...
Epoch 2/2... Batch 1254/1875... Discriminator Loss: 0.5363... Generator Loss: 0.6328...
Epoch 2/2... Batch 1264/1875... Discriminator Loss: 0.6587... Generator Loss: 0.6053...
Epoch 2/2... Batch 1274/1875... Discriminator Loss: 0.7619... Generator Loss: 0.6315...
Epoch 2/2... Batch 1284/1875... Discriminator Loss: 0.8814... Generator Loss: 0.4793...
Epoch 2/2... Batch 1294/1875... Discriminator Loss: 0.6462... Generator Loss: 0.6449...
Epoch 2/2... Batch 1304/1875... Discriminator Loss: 0.6222... Generator Loss: 0.5858...
Epoch 2/2... Batch 1314/1875... Discriminator Loss: 0.6502... Generator Loss: 0.6355...
Epoch 2/2... Batch 1324/1875... Discriminator Loss: 0.6942... Generator Loss: 0.5635...
Epoch 2/2... Batch 1334/1875... Discriminator Loss: 0.8048... Generator Loss: 0.5589...
Epoch 2/2... Batch 1344/1875... Discriminator Loss: 0.7609... Generator Loss: 0.5693...
Epoch 2/2... Batch 1354/1875... Discriminator Loss: 0.8397... Generator Loss: 0.5182...
Epoch 2/2... Batch 1364/1875... Discriminator Loss: 0.4966... Generator Loss: 0.6557...
Epoch 2/2... Batch 1374/1875... Discriminator Loss: 0.9821... Generator Loss: 0.4250...
Epoch 2/2... Batch 1384/1875... Discriminator Loss: 0.5891... Generator Loss: 0.6223...
Epoch 2/2... Batch 1394/1875... Discriminator Loss: 0.6302... Generator Loss: 0.5762...
Epoch 2/2... Batch 1404/1875... Discriminator Loss: 0.5419... Generator Loss: 0.6138...
Epoch 2/2... Batch 1414/1875... Discriminator Loss: 0.8264... Generator Loss: 0.4968...
Epoch 2/2... Batch 1424/1875... Discriminator Loss: 1.0116... Generator Loss: 0.5137...
Epoch 2/2... Batch 1434/1875... Discriminator Loss: 0.6924... Generator Loss: 0.6367...
Epoch 2/2... Batch 1444/1875... Discriminator Loss: 0.5612... Generator Loss: 0.5853...
Epoch 2/2... Batch 1454/1875... Discriminator Loss: 0.5479... Generator Loss: 0.6109...
Epoch 2/2... Batch 1464/1875... Discriminator Loss: 0.6872... Generator Loss: 0.5718...
Epoch 2/2... Batch 1474/1875... Discriminator Loss: 0.7854... Generator Loss: 0.5284...
Epoch 2/2... Batch 1484/1875... Discriminator Loss: 0.6028... Generator Loss: 0.6304...
Epoch 2/2... Batch 1494/1875... Discriminator Loss: 0.5804... Generator Loss: 0.6387...
Epoch 2/2... Batch 1504/1875... Discriminator Loss: 0.6950... Generator Loss: 0.5920...
Epoch 2/2... Batch 1514/1875... Discriminator Loss: 1.0407... Generator Loss: 0.4193...
Epoch 2/2... Batch 1524/1875... Discriminator Loss: 0.5815... Generator Loss: 0.5594...
Epoch 2/2... Batch 1534/1875... Discriminator Loss: 0.5763... Generator Loss: 0.6483...
Epoch 2/2... Batch 1544/1875... Discriminator Loss: 1.2863... Generator Loss: 0.3019...
Epoch 2/2... Batch 1554/1875... Discriminator Loss: 0.5617... Generator Loss: 0.6044...
Epoch 2/2... Batch 1564/1875... Discriminator Loss: 0.4505... Generator Loss: 0.6516...
Epoch 2/2... Batch 1574/1875... Discriminator Loss: 0.6042... Generator Loss: 0.6168...
Epoch 2/2... Batch 1584/1875... Discriminator Loss: 0.9897... Generator Loss: 0.4637...
Epoch 2/2... Batch 1594/1875... Discriminator Loss: 0.6051... Generator Loss: 0.6283...
Epoch 2/2... Batch 1604/1875... Discriminator Loss: 0.7375... Generator Loss: 0.6307...
Epoch 2/2... Batch 1614/1875... Discriminator Loss: 0.5401... Generator Loss: 0.6456...
Epoch 2/2... Batch 1624/1875... Discriminator Loss: 0.6988... Generator Loss: 0.5284...
Epoch 2/2... Batch 1634/1875... Discriminator Loss: 0.6863... Generator Loss: 0.6626...
Epoch 2/2... Batch 1644/1875... Discriminator Loss: 0.6597... Generator Loss: 0.5983...
Epoch 2/2... Batch 1654/1875... Discriminator Loss: 0.8597... Generator Loss: 0.6621...
Epoch 2/2... Batch 1664/1875... Discriminator Loss: 0.7624... Generator Loss: 0.4622...
Epoch 2/2... Batch 1674/1875... Discriminator Loss: 0.7662... Generator Loss: 0.5144...
Epoch 2/2... Batch 1684/1875... Discriminator Loss: 0.7446... Generator Loss: 0.5240...
Epoch 2/2... Batch 1694/1875... Discriminator Loss: 0.7202... Generator Loss: 0.5426...
Epoch 2/2... Batch 1704/1875... Discriminator Loss: 0.5097... Generator Loss: 0.6043...
Epoch 2/2... Batch 1714/1875... Discriminator Loss: 1.3544... Generator Loss: 0.3431...
Epoch 2/2... Batch 1724/1875... Discriminator Loss: 0.6115... Generator Loss: 0.6000...
Epoch 2/2... Batch 1734/1875... Discriminator Loss: 0.5529... Generator Loss: 0.6016...
Epoch 2/2... Batch 1744/1875... Discriminator Loss: 0.6148... Generator Loss: 0.6319...
Epoch 2/2... Batch 1754/1875... Discriminator Loss: 0.8832... Generator Loss: 0.4861...
Epoch 2/2... Batch 1764/1875... Discriminator Loss: 0.8800... Generator Loss: 0.5050...
Epoch 2/2... Batch 1774/1875... Discriminator Loss: 0.5196... Generator Loss: 0.6337...
Epoch 2/2... Batch 1784/1875... Discriminator Loss: 0.5398... Generator Loss: 0.5831...
Epoch 2/2... Batch 1794/1875... Discriminator Loss: 0.5949... Generator Loss: 0.6472...
Epoch 2/2... Batch 1804/1875... Discriminator Loss: 0.5822... Generator Loss: 0.5997...
Epoch 2/2... Batch 1814/1875... Discriminator Loss: 0.5695... Generator Loss: 0.6593...
Epoch 2/2... Batch 1824/1875... Discriminator Loss: 0.9553... Generator Loss: 0.6757...
Epoch 2/2... Batch 1834/1875... Discriminator Loss: 0.8908... Generator Loss: 0.4712...
Epoch 2/2... Batch 1844/1875... Discriminator Loss: 0.8867... Generator Loss: 0.4524...
Epoch 2/2... Batch 1854/1875... Discriminator Loss: 1.1333... Generator Loss: 0.4118...
Epoch 2/2... Batch 1864/1875... Discriminator Loss: 0.5720... Generator Loss: 0.6167...
Epoch 2/2... Batch 1874/1875... Discriminator Loss: 0.6775... Generator Loss: 0.5927...

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [24]:
batch_size = 32
z_dim = 100
learning_rate = 0.0001
beta1 = 0.6

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Batch 9/6331... Discriminator Loss: 2.2233... Generator Loss: 0.1772...
Epoch 1/1... Batch 19/6331... Discriminator Loss: 1.5911... Generator Loss: 0.2884...
Epoch 1/1... Batch 29/6331... Discriminator Loss: 1.5556... Generator Loss: 0.4265...
Epoch 1/1... Batch 39/6331... Discriminator Loss: 0.6526... Generator Loss: 0.5946...
Epoch 1/1... Batch 49/6331... Discriminator Loss: 0.7163... Generator Loss: 0.5677...
Epoch 1/1... Batch 59/6331... Discriminator Loss: 0.7553... Generator Loss: 0.5642...
Epoch 1/1... Batch 69/6331... Discriminator Loss: 0.8276... Generator Loss: 0.5575...
Epoch 1/1... Batch 79/6331... Discriminator Loss: 0.6655... Generator Loss: 0.5774...
Epoch 1/1... Batch 89/6331... Discriminator Loss: 0.5879... Generator Loss: 0.6272...
Epoch 1/1... Batch 99/6331... Discriminator Loss: 0.5803... Generator Loss: 0.5952...
Epoch 1/1... Batch 109/6331... Discriminator Loss: 0.7201... Generator Loss: 0.5987...
Epoch 1/1... Batch 119/6331... Discriminator Loss: 0.5755... Generator Loss: 0.6014...
Epoch 1/1... Batch 129/6331... Discriminator Loss: 0.5862... Generator Loss: 0.6291...
Epoch 1/1... Batch 139/6331... Discriminator Loss: 0.4829... Generator Loss: 0.6566...
Epoch 1/1... Batch 149/6331... Discriminator Loss: 0.5595... Generator Loss: 0.6223...
Epoch 1/1... Batch 159/6331... Discriminator Loss: 0.5709... Generator Loss: 0.6188...
Epoch 1/1... Batch 169/6331... Discriminator Loss: 0.5402... Generator Loss: 0.6510...
Epoch 1/1... Batch 179/6331... Discriminator Loss: 0.5745... Generator Loss: 0.6257...
Epoch 1/1... Batch 189/6331... Discriminator Loss: 0.8766... Generator Loss: 0.5214...
Epoch 1/1... Batch 199/6331... Discriminator Loss: 0.8019... Generator Loss: 0.5957...
Epoch 1/1... Batch 209/6331... Discriminator Loss: 0.6572... Generator Loss: 0.6073...
Epoch 1/1... Batch 219/6331... Discriminator Loss: 0.6197... Generator Loss: 0.6015...
Epoch 1/1... Batch 229/6331... Discriminator Loss: 0.6322... Generator Loss: 0.6383...
Epoch 1/1... Batch 239/6331... Discriminator Loss: 0.7733... Generator Loss: 0.5560...
Epoch 1/1... Batch 249/6331... Discriminator Loss: 0.9501... Generator Loss: 0.4964...
Epoch 1/1... Batch 259/6331... Discriminator Loss: 1.1066... Generator Loss: 0.5035...
Epoch 1/1... Batch 269/6331... Discriminator Loss: 1.0556... Generator Loss: 0.5134...
Epoch 1/1... Batch 279/6331... Discriminator Loss: 0.8519... Generator Loss: 0.5467...
Epoch 1/1... Batch 289/6331... Discriminator Loss: 0.8106... Generator Loss: 0.5900...
Epoch 1/1... Batch 299/6331... Discriminator Loss: 0.9534... Generator Loss: 0.5197...
Epoch 1/1... Batch 309/6331... Discriminator Loss: 0.8796... Generator Loss: 0.5585...
Epoch 1/1... Batch 319/6331... Discriminator Loss: 1.0194... Generator Loss: 0.5063...
Epoch 1/1... Batch 329/6331... Discriminator Loss: 1.1873... Generator Loss: 0.4617...
Epoch 1/1... Batch 339/6331... Discriminator Loss: 1.0502... Generator Loss: 0.4673...
Epoch 1/1... Batch 349/6331... Discriminator Loss: 0.9559... Generator Loss: 0.5229...
Epoch 1/1... Batch 359/6331... Discriminator Loss: 0.8426... Generator Loss: 0.5647...
Epoch 1/1... Batch 369/6331... Discriminator Loss: 0.8827... Generator Loss: 0.5290...
Epoch 1/1... Batch 379/6331... Discriminator Loss: 1.1177... Generator Loss: 0.4934...
Epoch 1/1... Batch 389/6331... Discriminator Loss: 0.7983... Generator Loss: 0.5832...
Epoch 1/1... Batch 399/6331... Discriminator Loss: 0.7533... Generator Loss: 0.5477...
Epoch 1/1... Batch 409/6331... Discriminator Loss: 0.7132... Generator Loss: 0.5808...
Epoch 1/1... Batch 419/6331... Discriminator Loss: 0.9100... Generator Loss: 0.5587...
Epoch 1/1... Batch 429/6331... Discriminator Loss: 0.9481... Generator Loss: 0.4744...
Epoch 1/1... Batch 439/6331... Discriminator Loss: 0.8308... Generator Loss: 0.5512...
Epoch 1/1... Batch 449/6331... Discriminator Loss: 0.8994... Generator Loss: 0.5633...
Epoch 1/1... Batch 459/6331... Discriminator Loss: 0.8068... Generator Loss: 0.5913...
Epoch 1/1... Batch 469/6331... Discriminator Loss: 0.7144... Generator Loss: 0.6363...
Epoch 1/1... Batch 479/6331... Discriminator Loss: 0.7995... Generator Loss: 0.5271...
Epoch 1/1... Batch 489/6331... Discriminator Loss: 0.7179... Generator Loss: 0.5884...
Epoch 1/1... Batch 499/6331... Discriminator Loss: 0.8719... Generator Loss: 0.5358...
Epoch 1/1... Batch 509/6331... Discriminator Loss: 0.7285... Generator Loss: 0.6177...
Epoch 1/1... Batch 519/6331... Discriminator Loss: 0.7341... Generator Loss: 0.5436...
Epoch 1/1... Batch 529/6331... Discriminator Loss: 0.9450... Generator Loss: 0.4502...
Epoch 1/1... Batch 539/6331... Discriminator Loss: 0.6211... Generator Loss: 0.6021...
Epoch 1/1... Batch 549/6331... Discriminator Loss: 0.7219... Generator Loss: 0.5968...
Epoch 1/1... Batch 559/6331... Discriminator Loss: 0.6269... Generator Loss: 0.6047...
Epoch 1/1... Batch 569/6331... Discriminator Loss: 0.5918... Generator Loss: 0.6206...
Epoch 1/1... Batch 579/6331... Discriminator Loss: 0.6076... Generator Loss: 0.6393...
Epoch 1/1... Batch 589/6331... Discriminator Loss: 0.8350... Generator Loss: 0.4679...
Epoch 1/1... Batch 599/6331... Discriminator Loss: 0.7013... Generator Loss: 0.5829...
Epoch 1/1... Batch 609/6331... Discriminator Loss: 0.5892... Generator Loss: 0.5947...
Epoch 1/1... Batch 619/6331... Discriminator Loss: 0.6438... Generator Loss: 0.5941...
Epoch 1/1... Batch 629/6331... Discriminator Loss: 0.6874... Generator Loss: 0.5574...
Epoch 1/1... Batch 639/6331... Discriminator Loss: 0.7082... Generator Loss: 0.5506...
Epoch 1/1... Batch 649/6331... Discriminator Loss: 0.5262... Generator Loss: 0.6190...
Epoch 1/1... Batch 659/6331... Discriminator Loss: 0.8635... Generator Loss: 0.5966...
Epoch 1/1... Batch 669/6331... Discriminator Loss: 0.6567... Generator Loss: 0.6142...
Epoch 1/1... Batch 679/6331... Discriminator Loss: 0.6788... Generator Loss: 0.5778...
Epoch 1/1... Batch 689/6331... Discriminator Loss: 0.6121... Generator Loss: 0.6195...
Epoch 1/1... Batch 699/6331... Discriminator Loss: 0.7057... Generator Loss: 0.6174...
Epoch 1/1... Batch 709/6331... Discriminator Loss: 0.6655... Generator Loss: 0.6003...
Epoch 1/1... Batch 719/6331... Discriminator Loss: 0.5122... Generator Loss: 0.6499...
Epoch 1/1... Batch 729/6331... Discriminator Loss: 0.8221... Generator Loss: 0.5057...
Epoch 1/1... Batch 739/6331... Discriminator Loss: 0.6387... Generator Loss: 0.5953...
Epoch 1/1... Batch 749/6331... Discriminator Loss: 0.7429... Generator Loss: 0.5546...
Epoch 1/1... Batch 759/6331... Discriminator Loss: 0.8896... Generator Loss: 0.5087...
Epoch 1/1... Batch 769/6331... Discriminator Loss: 0.7198... Generator Loss: 0.5957...
Epoch 1/1... Batch 779/6331... Discriminator Loss: 0.7610... Generator Loss: 0.6507...
Epoch 1/1... Batch 789/6331... Discriminator Loss: 0.6786... Generator Loss: 0.6005...
Epoch 1/1... Batch 799/6331... Discriminator Loss: 1.0981... Generator Loss: 0.6409...
Epoch 1/1... Batch 809/6331... Discriminator Loss: 1.4912... Generator Loss: 0.2875...
Epoch 1/1... Batch 819/6331... Discriminator Loss: 1.0614... Generator Loss: 0.5614...
Epoch 1/1... Batch 829/6331... Discriminator Loss: 1.5528... Generator Loss: 0.2799...
Epoch 1/1... Batch 839/6331... Discriminator Loss: 1.2933... Generator Loss: 0.3606...
Epoch 1/1... Batch 849/6331... Discriminator Loss: 1.0927... Generator Loss: 0.5406...
Epoch 1/1... Batch 859/6331... Discriminator Loss: 0.9099... Generator Loss: 0.5740...
Epoch 1/1... Batch 869/6331... Discriminator Loss: 1.3509... Generator Loss: 0.3665...
Epoch 1/1... Batch 879/6331... Discriminator Loss: 0.9698... Generator Loss: 0.5120...
Epoch 1/1... Batch 889/6331... Discriminator Loss: 0.9023... Generator Loss: 0.4972...
Epoch 1/1... Batch 899/6331... Discriminator Loss: 1.0470... Generator Loss: 0.5031...
Epoch 1/1... Batch 909/6331... Discriminator Loss: 1.0380... Generator Loss: 0.5610...
Epoch 1/1... Batch 919/6331... Discriminator Loss: 1.4289... Generator Loss: 0.4009...
Epoch 1/1... Batch 929/6331... Discriminator Loss: 0.9294... Generator Loss: 0.5639...
Epoch 1/1... Batch 939/6331... Discriminator Loss: 1.5263... Generator Loss: 0.3929...
Epoch 1/1... Batch 949/6331... Discriminator Loss: 1.3258... Generator Loss: 0.4066...
Epoch 1/1... Batch 959/6331... Discriminator Loss: 1.2872... Generator Loss: 0.4549...
Epoch 1/1... Batch 969/6331... Discriminator Loss: 1.0860... Generator Loss: 0.5118...
Epoch 1/1... Batch 979/6331... Discriminator Loss: 1.2456... Generator Loss: 0.5403...
Epoch 1/1... Batch 989/6331... Discriminator Loss: 1.1287... Generator Loss: 0.5173...
Epoch 1/1... Batch 999/6331... Discriminator Loss: 1.5797... Generator Loss: 0.3874...
Epoch 1/1... Batch 1009/6331... Discriminator Loss: 1.6246... Generator Loss: 0.4214...
Epoch 1/1... Batch 1019/6331... Discriminator Loss: 1.1001... Generator Loss: 0.4420...
Epoch 1/1... Batch 1029/6331... Discriminator Loss: 1.3992... Generator Loss: 0.4255...
Epoch 1/1... Batch 1039/6331... Discriminator Loss: 1.5602... Generator Loss: 0.3867...
Epoch 1/1... Batch 1049/6331... Discriminator Loss: 1.6607... Generator Loss: 0.3578...
Epoch 1/1... Batch 1059/6331... Discriminator Loss: 1.5284... Generator Loss: 0.3792...
Epoch 1/1... Batch 1069/6331... Discriminator Loss: 1.6244... Generator Loss: 0.3968...
Epoch 1/1... Batch 1079/6331... Discriminator Loss: 1.5106... Generator Loss: 0.4336...
Epoch 1/1... Batch 1089/6331... Discriminator Loss: 1.5398... Generator Loss: 0.4137...
Epoch 1/1... Batch 1099/6331... Discriminator Loss: 1.4142... Generator Loss: 0.4366...
Epoch 1/1... Batch 1109/6331... Discriminator Loss: 1.5949... Generator Loss: 0.4046...
Epoch 1/1... Batch 1119/6331... Discriminator Loss: 1.4033... Generator Loss: 0.4213...
Epoch 1/1... Batch 1129/6331... Discriminator Loss: 1.5762... Generator Loss: 0.3874...
Epoch 1/1... Batch 1139/6331... Discriminator Loss: 1.4109... Generator Loss: 0.4458...
Epoch 1/1... Batch 1149/6331... Discriminator Loss: 1.4936... Generator Loss: 0.4166...
Epoch 1/1... Batch 1159/6331... Discriminator Loss: 1.4469... Generator Loss: 0.3797...
Epoch 1/1... Batch 1169/6331... Discriminator Loss: 1.6544... Generator Loss: 0.3946...
Epoch 1/1... Batch 1179/6331... Discriminator Loss: 1.3242... Generator Loss: 0.4617...
Epoch 1/1... Batch 1189/6331... Discriminator Loss: 1.7346... Generator Loss: 0.3404...
Epoch 1/1... Batch 1199/6331... Discriminator Loss: 1.4100... Generator Loss: 0.4003...
Epoch 1/1... Batch 1209/6331... Discriminator Loss: 1.5863... Generator Loss: 0.4194...
Epoch 1/1... Batch 1219/6331... Discriminator Loss: 1.3997... Generator Loss: 0.4195...
Epoch 1/1... Batch 1229/6331... Discriminator Loss: 1.4783... Generator Loss: 0.4446...
Epoch 1/1... Batch 1239/6331... Discriminator Loss: 1.3928... Generator Loss: 0.4001...
Epoch 1/1... Batch 1249/6331... Discriminator Loss: 1.5266... Generator Loss: 0.4199...
Epoch 1/1... Batch 1259/6331... Discriminator Loss: 1.4423... Generator Loss: 0.4267...
Epoch 1/1... Batch 1269/6331... Discriminator Loss: 1.5697... Generator Loss: 0.4243...
Epoch 1/1... Batch 1279/6331... Discriminator Loss: 1.3690... Generator Loss: 0.4383...
Epoch 1/1... Batch 1289/6331... Discriminator Loss: 1.5242... Generator Loss: 0.4236...
Epoch 1/1... Batch 1299/6331... Discriminator Loss: 1.5828... Generator Loss: 0.3847...
Epoch 1/1... Batch 1309/6331... Discriminator Loss: 1.3157... Generator Loss: 0.4565...
Epoch 1/1... Batch 1319/6331... Discriminator Loss: 1.4065... Generator Loss: 0.4153...
Epoch 1/1... Batch 1329/6331... Discriminator Loss: 1.5486... Generator Loss: 0.4186...
Epoch 1/1... Batch 1339/6331... Discriminator Loss: 1.5349... Generator Loss: 0.4132...
Epoch 1/1... Batch 1349/6331... Discriminator Loss: 1.4652... Generator Loss: 0.3983...
Epoch 1/1... Batch 1359/6331... Discriminator Loss: 1.4827... Generator Loss: 0.4197...
Epoch 1/1... Batch 1369/6331... Discriminator Loss: 1.4197... Generator Loss: 0.4257...
Epoch 1/1... Batch 1379/6331... Discriminator Loss: 1.6001... Generator Loss: 0.3948...
Epoch 1/1... Batch 1389/6331... Discriminator Loss: 1.6789... Generator Loss: 0.3981...
Epoch 1/1... Batch 1399/6331... Discriminator Loss: 1.5067... Generator Loss: 0.3917...
Epoch 1/1... Batch 1409/6331... Discriminator Loss: 1.6385... Generator Loss: 0.4018...
Epoch 1/1... Batch 1419/6331... Discriminator Loss: 1.4953... Generator Loss: 0.4005...
Epoch 1/1... Batch 1429/6331... Discriminator Loss: 1.4292... Generator Loss: 0.4418...
Epoch 1/1... Batch 1439/6331... Discriminator Loss: 1.5346... Generator Loss: 0.3971...
Epoch 1/1... Batch 1449/6331... Discriminator Loss: 1.6376... Generator Loss: 0.3944...
Epoch 1/1... Batch 1459/6331... Discriminator Loss: 1.6034... Generator Loss: 0.3821...
Epoch 1/1... Batch 1469/6331... Discriminator Loss: 1.4179... Generator Loss: 0.4495...
Epoch 1/1... Batch 1479/6331... Discriminator Loss: 1.5721... Generator Loss: 0.3919...
Epoch 1/1... Batch 1489/6331... Discriminator Loss: 1.5014... Generator Loss: 0.4020...
Epoch 1/1... Batch 1499/6331... Discriminator Loss: 1.4335... Generator Loss: 0.4260...
Epoch 1/1... Batch 1509/6331... Discriminator Loss: 1.3953... Generator Loss: 0.4191...
Epoch 1/1... Batch 1519/6331... Discriminator Loss: 1.4576... Generator Loss: 0.4328...
Epoch 1/1... Batch 1529/6331... Discriminator Loss: 1.6104... Generator Loss: 0.4200...
Epoch 1/1... Batch 1539/6331... Discriminator Loss: 1.4856... Generator Loss: 0.4103...
Epoch 1/1... Batch 1549/6331... Discriminator Loss: 1.3369... Generator Loss: 0.4195...
Epoch 1/1... Batch 1559/6331... Discriminator Loss: 1.4352... Generator Loss: 0.4068...
Epoch 1/1... Batch 1569/6331... Discriminator Loss: 1.5467... Generator Loss: 0.4451...
Epoch 1/1... Batch 1579/6331... Discriminator Loss: 1.3461... Generator Loss: 0.4023...
Epoch 1/1... Batch 1589/6331... Discriminator Loss: 1.4777... Generator Loss: 0.4036...
Epoch 1/1... Batch 1599/6331... Discriminator Loss: 1.5491... Generator Loss: 0.4084...
Epoch 1/1... Batch 1609/6331... Discriminator Loss: 1.5022... Generator Loss: 0.4325...
Epoch 1/1... Batch 1619/6331... Discriminator Loss: 1.4232... Generator Loss: 0.4339...
Epoch 1/1... Batch 1629/6331... Discriminator Loss: 1.5724... Generator Loss: 0.3836...
Epoch 1/1... Batch 1639/6331... Discriminator Loss: 1.4886... Generator Loss: 0.3906...
Epoch 1/1... Batch 1649/6331... Discriminator Loss: 1.4634... Generator Loss: 0.4173...
Epoch 1/1... Batch 1659/6331... Discriminator Loss: 1.5585... Generator Loss: 0.3993...
Epoch 1/1... Batch 1669/6331... Discriminator Loss: 1.3965... Generator Loss: 0.4491...
Epoch 1/1... Batch 1679/6331... Discriminator Loss: 1.4680... Generator Loss: 0.4393...
Epoch 1/1... Batch 1689/6331... Discriminator Loss: 1.3770... Generator Loss: 0.4324...
Epoch 1/1... Batch 1699/6331... Discriminator Loss: 1.3351... Generator Loss: 0.4315...
Epoch 1/1... Batch 1709/6331... Discriminator Loss: 1.6178... Generator Loss: 0.4117...
Epoch 1/1... Batch 1719/6331... Discriminator Loss: 1.5454... Generator Loss: 0.4146...
Epoch 1/1... Batch 1729/6331... Discriminator Loss: 1.4111... Generator Loss: 0.4054...
Epoch 1/1... Batch 1739/6331... Discriminator Loss: 1.3723... Generator Loss: 0.4659...
Epoch 1/1... Batch 1749/6331... Discriminator Loss: 1.5419... Generator Loss: 0.4161...
Epoch 1/1... Batch 1759/6331... Discriminator Loss: 1.4594... Generator Loss: 0.4257...
Epoch 1/1... Batch 1769/6331... Discriminator Loss: 1.5395... Generator Loss: 0.3858...
Epoch 1/1... Batch 1779/6331... Discriminator Loss: 1.5022... Generator Loss: 0.4184...
Epoch 1/1... Batch 1789/6331... Discriminator Loss: 1.4851... Generator Loss: 0.4445...
Epoch 1/1... Batch 1799/6331... Discriminator Loss: 1.5039... Generator Loss: 0.4131...
Epoch 1/1... Batch 1809/6331... Discriminator Loss: 1.4712... Generator Loss: 0.4161...
Epoch 1/1... Batch 1819/6331... Discriminator Loss: 1.4243... Generator Loss: 0.4126...
Epoch 1/1... Batch 1829/6331... Discriminator Loss: 1.3788... Generator Loss: 0.4296...
Epoch 1/1... Batch 1839/6331... Discriminator Loss: 1.4039... Generator Loss: 0.4175...
Epoch 1/1... Batch 1849/6331... Discriminator Loss: 1.5830... Generator Loss: 0.4235...
Epoch 1/1... Batch 1859/6331... Discriminator Loss: 1.5313... Generator Loss: 0.3985...
Epoch 1/1... Batch 1869/6331... Discriminator Loss: 1.4850... Generator Loss: 0.4150...
Epoch 1/1... Batch 1879/6331... Discriminator Loss: 1.3349... Generator Loss: 0.4640...
Epoch 1/1... Batch 1889/6331... Discriminator Loss: 1.4604... Generator Loss: 0.4457...
Epoch 1/1... Batch 1899/6331... Discriminator Loss: 1.5193... Generator Loss: 0.4160...
Epoch 1/1... Batch 1909/6331... Discriminator Loss: 1.4757... Generator Loss: 0.4130...
Epoch 1/1... Batch 1919/6331... Discriminator Loss: 1.4022... Generator Loss: 0.4231...
Epoch 1/1... Batch 1929/6331... Discriminator Loss: 1.4251... Generator Loss: 0.4158...
Epoch 1/1... Batch 1939/6331... Discriminator Loss: 1.4518... Generator Loss: 0.4032...
Epoch 1/1... Batch 1949/6331... Discriminator Loss: 1.4257... Generator Loss: 0.4192...
Epoch 1/1... Batch 1959/6331... Discriminator Loss: 1.4738... Generator Loss: 0.4331...
Epoch 1/1... Batch 1969/6331... Discriminator Loss: 1.4477... Generator Loss: 0.4102...
Epoch 1/1... Batch 1979/6331... Discriminator Loss: 1.5183... Generator Loss: 0.4404...
Epoch 1/1... Batch 1989/6331... Discriminator Loss: 1.3063... Generator Loss: 0.4268...
Epoch 1/1... Batch 1999/6331... Discriminator Loss: 1.3878... Generator Loss: 0.4329...
Epoch 1/1... Batch 2009/6331... Discriminator Loss: 1.3963... Generator Loss: 0.4160...
Epoch 1/1... Batch 2019/6331... Discriminator Loss: 1.4315... Generator Loss: 0.4119...
Epoch 1/1... Batch 2029/6331... Discriminator Loss: 1.3246... Generator Loss: 0.4314...
Epoch 1/1... Batch 2039/6331... Discriminator Loss: 1.4065... Generator Loss: 0.4104...
Epoch 1/1... Batch 2049/6331... Discriminator Loss: 1.4610... Generator Loss: 0.4235...
Epoch 1/1... Batch 2059/6331... Discriminator Loss: 1.6217... Generator Loss: 0.4225...
Epoch 1/1... Batch 2069/6331... Discriminator Loss: 1.4136... Generator Loss: 0.4099...
Epoch 1/1... Batch 2079/6331... Discriminator Loss: 1.4250... Generator Loss: 0.4138...
Epoch 1/1... Batch 2089/6331... Discriminator Loss: 1.5101... Generator Loss: 0.4196...
Epoch 1/1... Batch 2099/6331... Discriminator Loss: 1.4578... Generator Loss: 0.4135...
Epoch 1/1... Batch 2109/6331... Discriminator Loss: 1.4018... Generator Loss: 0.4134...
Epoch 1/1... Batch 2119/6331... Discriminator Loss: 1.3176... Generator Loss: 0.4265...
Epoch 1/1... Batch 2129/6331... Discriminator Loss: 1.4785... Generator Loss: 0.4306...
Epoch 1/1... Batch 2139/6331... Discriminator Loss: 1.3580... Generator Loss: 0.4445...
Epoch 1/1... Batch 2149/6331... Discriminator Loss: 1.4868... Generator Loss: 0.4102...
Epoch 1/1... Batch 2159/6331... Discriminator Loss: 1.4033... Generator Loss: 0.4278...
Epoch 1/1... Batch 2169/6331... Discriminator Loss: 1.5266... Generator Loss: 0.4102...
Epoch 1/1... Batch 2179/6331... Discriminator Loss: 1.4657... Generator Loss: 0.4145...
Epoch 1/1... Batch 2189/6331... Discriminator Loss: 1.4367... Generator Loss: 0.4185...
Epoch 1/1... Batch 2199/6331... Discriminator Loss: 1.4618... Generator Loss: 0.4247...
Epoch 1/1... Batch 2209/6331... Discriminator Loss: 1.4830... Generator Loss: 0.4037...
Epoch 1/1... Batch 2219/6331... Discriminator Loss: 1.4145... Generator Loss: 0.4477...
Epoch 1/1... Batch 2229/6331... Discriminator Loss: 1.5224... Generator Loss: 0.4338...
Epoch 1/1... Batch 2239/6331... Discriminator Loss: 1.4987... Generator Loss: 0.4328...
Epoch 1/1... Batch 2249/6331... Discriminator Loss: 1.4799... Generator Loss: 0.4161...
Epoch 1/1... Batch 2259/6331... Discriminator Loss: 1.4937... Generator Loss: 0.3907...
Epoch 1/1... Batch 2269/6331... Discriminator Loss: 1.3830... Generator Loss: 0.4277...
Epoch 1/1... Batch 2279/6331... Discriminator Loss: 1.4664... Generator Loss: 0.4015...
Epoch 1/1... Batch 2289/6331... Discriminator Loss: 1.4462... Generator Loss: 0.4335...
Epoch 1/1... Batch 2299/6331... Discriminator Loss: 1.3773... Generator Loss: 0.4329...
Epoch 1/1... Batch 2309/6331... Discriminator Loss: 1.5042... Generator Loss: 0.4249...
Epoch 1/1... Batch 2319/6331... Discriminator Loss: 1.4704... Generator Loss: 0.4316...
Epoch 1/1... Batch 2329/6331... Discriminator Loss: 1.3549... Generator Loss: 0.4221...
Epoch 1/1... Batch 2339/6331... Discriminator Loss: 1.3884... Generator Loss: 0.4163...
Epoch 1/1... Batch 2349/6331... Discriminator Loss: 1.4093... Generator Loss: 0.4284...
Epoch 1/1... Batch 2359/6331... Discriminator Loss: 1.3737... Generator Loss: 0.4336...
Epoch 1/1... Batch 2369/6331... Discriminator Loss: 1.3725... Generator Loss: 0.4216...
Epoch 1/1... Batch 2379/6331... Discriminator Loss: 1.4613... Generator Loss: 0.4222...
Epoch 1/1... Batch 2389/6331... Discriminator Loss: 1.5298... Generator Loss: 0.4198...
Epoch 1/1... Batch 2399/6331... Discriminator Loss: 1.4161... Generator Loss: 0.4412...
Epoch 1/1... Batch 2409/6331... Discriminator Loss: 1.4433... Generator Loss: 0.4169...
Epoch 1/1... Batch 2419/6331... Discriminator Loss: 1.4788... Generator Loss: 0.4283...
Epoch 1/1... Batch 2429/6331... Discriminator Loss: 1.3974... Generator Loss: 0.4234...
Epoch 1/1... Batch 2439/6331... Discriminator Loss: 1.4123... Generator Loss: 0.4309...
Epoch 1/1... Batch 2449/6331... Discriminator Loss: 1.5029... Generator Loss: 0.4245...
Epoch 1/1... Batch 2459/6331... Discriminator Loss: 1.4709... Generator Loss: 0.4416...
Epoch 1/1... Batch 2469/6331... Discriminator Loss: 1.4197... Generator Loss: 0.4245...
Epoch 1/1... Batch 2479/6331... Discriminator Loss: 1.4441... Generator Loss: 0.4242...
Epoch 1/1... Batch 2489/6331... Discriminator Loss: 1.3992... Generator Loss: 0.4294...
Epoch 1/1... Batch 2499/6331... Discriminator Loss: 1.3842... Generator Loss: 0.4162...
Epoch 1/1... Batch 2509/6331... Discriminator Loss: 1.4473... Generator Loss: 0.4211...
Epoch 1/1... Batch 2519/6331... Discriminator Loss: 1.5038... Generator Loss: 0.4187...
Epoch 1/1... Batch 2529/6331... Discriminator Loss: 1.4117... Generator Loss: 0.4184...
Epoch 1/1... Batch 2539/6331... Discriminator Loss: 1.4940... Generator Loss: 0.4146...
Epoch 1/1... Batch 2549/6331... Discriminator Loss: 1.4572... Generator Loss: 0.4373...
Epoch 1/1... Batch 2559/6331... Discriminator Loss: 1.4744... Generator Loss: 0.4218...
Epoch 1/1... Batch 2569/6331... Discriminator Loss: 1.4238... Generator Loss: 0.3995...
Epoch 1/1... Batch 2579/6331... Discriminator Loss: 1.4436... Generator Loss: 0.4277...
Epoch 1/1... Batch 2589/6331... Discriminator Loss: 1.4436... Generator Loss: 0.4144...
Epoch 1/1... Batch 2599/6331... Discriminator Loss: 1.4598... Generator Loss: 0.4202...
Epoch 1/1... Batch 2609/6331... Discriminator Loss: 1.4590... Generator Loss: 0.4369...
Epoch 1/1... Batch 2619/6331... Discriminator Loss: 1.5109... Generator Loss: 0.4225...
Epoch 1/1... Batch 2629/6331... Discriminator Loss: 1.3121... Generator Loss: 0.4530...
Epoch 1/1... Batch 2639/6331... Discriminator Loss: 1.5591... Generator Loss: 0.4269...
Epoch 1/1... Batch 2649/6331... Discriminator Loss: 1.4720... Generator Loss: 0.3934...
Epoch 1/1... Batch 2659/6331... Discriminator Loss: 1.4277... Generator Loss: 0.4215...
Epoch 1/1... Batch 2669/6331... Discriminator Loss: 1.3713... Generator Loss: 0.4311...
Epoch 1/1... Batch 2679/6331... Discriminator Loss: 1.4649... Generator Loss: 0.4204...
Epoch 1/1... Batch 2689/6331... Discriminator Loss: 1.3709... Generator Loss: 0.4372...
Epoch 1/1... Batch 2699/6331... Discriminator Loss: 1.4719... Generator Loss: 0.4227...
Epoch 1/1... Batch 2709/6331... Discriminator Loss: 1.3952... Generator Loss: 0.4330...
Epoch 1/1... Batch 2719/6331... Discriminator Loss: 1.4449... Generator Loss: 0.4053...
Epoch 1/1... Batch 2729/6331... Discriminator Loss: 1.4632... Generator Loss: 0.4222...
Epoch 1/1... Batch 2739/6331... Discriminator Loss: 1.3699... Generator Loss: 0.4268...
Epoch 1/1... Batch 2749/6331... Discriminator Loss: 1.4822... Generator Loss: 0.4233...
Epoch 1/1... Batch 2759/6331... Discriminator Loss: 1.4456... Generator Loss: 0.4330...
Epoch 1/1... Batch 2769/6331... Discriminator Loss: 1.4284... Generator Loss: 0.4215...
Epoch 1/1... Batch 2779/6331... Discriminator Loss: 1.3905... Generator Loss: 0.4357...
Epoch 1/1... Batch 2789/6331... Discriminator Loss: 1.4585... Generator Loss: 0.4306...
Epoch 1/1... Batch 2799/6331... Discriminator Loss: 1.3732... Generator Loss: 0.4540...
Epoch 1/1... Batch 2809/6331... Discriminator Loss: 1.4465... Generator Loss: 0.4225...
Epoch 1/1... Batch 2819/6331... Discriminator Loss: 1.4070... Generator Loss: 0.4395...
Epoch 1/1... Batch 2829/6331... Discriminator Loss: 1.4331... Generator Loss: 0.4193...
Epoch 1/1... Batch 2839/6331... Discriminator Loss: 1.3772... Generator Loss: 0.4469...
Epoch 1/1... Batch 2849/6331... Discriminator Loss: 1.4315... Generator Loss: 0.4343...
Epoch 1/1... Batch 2859/6331... Discriminator Loss: 1.4318... Generator Loss: 0.4295...
Epoch 1/1... Batch 2869/6331... Discriminator Loss: 1.4026... Generator Loss: 0.4306...
Epoch 1/1... Batch 2879/6331... Discriminator Loss: 1.5105... Generator Loss: 0.4303...
Epoch 1/1... Batch 2889/6331... Discriminator Loss: 1.4731... Generator Loss: 0.4390...
Epoch 1/1... Batch 2899/6331... Discriminator Loss: 1.3959... Generator Loss: 0.4092...
Epoch 1/1... Batch 2909/6331... Discriminator Loss: 1.4055... Generator Loss: 0.4437...
Epoch 1/1... Batch 2919/6331... Discriminator Loss: 1.4418... Generator Loss: 0.4523...
Epoch 1/1... Batch 2929/6331... Discriminator Loss: 1.4366... Generator Loss: 0.4296...
Epoch 1/1... Batch 2939/6331... Discriminator Loss: 1.4701... Generator Loss: 0.3990...
Epoch 1/1... Batch 2949/6331... Discriminator Loss: 1.3723... Generator Loss: 0.4202...
Epoch 1/1... Batch 2959/6331... Discriminator Loss: 1.4068... Generator Loss: 0.4171...
Epoch 1/1... Batch 2969/6331... Discriminator Loss: 1.4158... Generator Loss: 0.4500...
Epoch 1/1... Batch 2979/6331... Discriminator Loss: 1.4682... Generator Loss: 0.4321...
Epoch 1/1... Batch 2989/6331... Discriminator Loss: 1.3787... Generator Loss: 0.4289...
Epoch 1/1... Batch 2999/6331... Discriminator Loss: 1.4200... Generator Loss: 0.4285...
Epoch 1/1... Batch 3009/6331... Discriminator Loss: 1.4202... Generator Loss: 0.4185...
Epoch 1/1... Batch 3019/6331... Discriminator Loss: 1.4313... Generator Loss: 0.4278...
Epoch 1/1... Batch 3029/6331... Discriminator Loss: 1.4612... Generator Loss: 0.4236...
Epoch 1/1... Batch 3039/6331... Discriminator Loss: 1.4555... Generator Loss: 0.4423...
Epoch 1/1... Batch 3049/6331... Discriminator Loss: 1.4273... Generator Loss: 0.4352...
Epoch 1/1... Batch 3059/6331... Discriminator Loss: 1.3541... Generator Loss: 0.4404...
Epoch 1/1... Batch 3069/6331... Discriminator Loss: 1.3925... Generator Loss: 0.4500...
Epoch 1/1... Batch 3079/6331... Discriminator Loss: 1.4155... Generator Loss: 0.4450...
Epoch 1/1... Batch 3089/6331... Discriminator Loss: 1.4284... Generator Loss: 0.4021...
Epoch 1/1... Batch 3099/6331... Discriminator Loss: 1.4370... Generator Loss: 0.4310...
Epoch 1/1... Batch 3109/6331... Discriminator Loss: 1.4388... Generator Loss: 0.4217...
Epoch 1/1... Batch 3119/6331... Discriminator Loss: 1.5037... Generator Loss: 0.3977...
Epoch 1/1... Batch 3129/6331... Discriminator Loss: 1.4110... Generator Loss: 0.4241...
Epoch 1/1... Batch 3139/6331... Discriminator Loss: 1.4875... Generator Loss: 0.4186...
Epoch 1/1... Batch 3149/6331... Discriminator Loss: 1.4062... Generator Loss: 0.4431...
Epoch 1/1... Batch 3159/6331... Discriminator Loss: 1.3713... Generator Loss: 0.4371...
Epoch 1/1... Batch 3169/6331... Discriminator Loss: 1.4273... Generator Loss: 0.4318...
Epoch 1/1... Batch 3179/6331... Discriminator Loss: 1.4387... Generator Loss: 0.4244...
Epoch 1/1... Batch 3189/6331... Discriminator Loss: 1.3879... Generator Loss: 0.4279...
Epoch 1/1... Batch 3199/6331... Discriminator Loss: 1.4638... Generator Loss: 0.4052...
Epoch 1/1... Batch 3209/6331... Discriminator Loss: 1.4515... Generator Loss: 0.4181...
Epoch 1/1... Batch 3219/6331... Discriminator Loss: 1.3688... Generator Loss: 0.4466...
Epoch 1/1... Batch 3229/6331... Discriminator Loss: 1.4410... Generator Loss: 0.4364...
Epoch 1/1... Batch 3239/6331... Discriminator Loss: 1.3375... Generator Loss: 0.4286...
Epoch 1/1... Batch 3249/6331... Discriminator Loss: 1.4617... Generator Loss: 0.4335...
Epoch 1/1... Batch 3259/6331... Discriminator Loss: 1.4413... Generator Loss: 0.4203...
Epoch 1/1... Batch 3269/6331... Discriminator Loss: 1.4011... Generator Loss: 0.4278...
Epoch 1/1... Batch 3279/6331... Discriminator Loss: 1.4107... Generator Loss: 0.4330...
Epoch 1/1... Batch 3289/6331... Discriminator Loss: 1.4325... Generator Loss: 0.4295...
Epoch 1/1... Batch 3299/6331... Discriminator Loss: 1.3898... Generator Loss: 0.4243...
Epoch 1/1... Batch 3309/6331... Discriminator Loss: 1.4557... Generator Loss: 0.4197...
Epoch 1/1... Batch 3319/6331... Discriminator Loss: 1.3745... Generator Loss: 0.4439...
Epoch 1/1... Batch 3329/6331... Discriminator Loss: 1.4674... Generator Loss: 0.4463...
Epoch 1/1... Batch 3339/6331... Discriminator Loss: 1.4502... Generator Loss: 0.4353...
Epoch 1/1... Batch 3349/6331... Discriminator Loss: 1.3586... Generator Loss: 0.4241...
Epoch 1/1... Batch 3359/6331... Discriminator Loss: 1.4396... Generator Loss: 0.4170...
Epoch 1/1... Batch 3369/6331... Discriminator Loss: 1.3281... Generator Loss: 0.4399...
Epoch 1/1... Batch 3379/6331... Discriminator Loss: 1.4606... Generator Loss: 0.4279...
Epoch 1/1... Batch 3389/6331... Discriminator Loss: 1.4054... Generator Loss: 0.4299...
Epoch 1/1... Batch 3399/6331... Discriminator Loss: 1.4485... Generator Loss: 0.4332...
Epoch 1/1... Batch 3409/6331... Discriminator Loss: 1.3620... Generator Loss: 0.4372...
Epoch 1/1... Batch 3419/6331... Discriminator Loss: 1.4170... Generator Loss: 0.4327...
Epoch 1/1... Batch 3429/6331... Discriminator Loss: 1.4506... Generator Loss: 0.4499...
Epoch 1/1... Batch 3439/6331... Discriminator Loss: 1.4751... Generator Loss: 0.4177...
Epoch 1/1... Batch 3449/6331... Discriminator Loss: 1.3619... Generator Loss: 0.4186...
Epoch 1/1... Batch 3459/6331... Discriminator Loss: 1.3781... Generator Loss: 0.4423...
Epoch 1/1... Batch 3469/6331... Discriminator Loss: 1.3797... Generator Loss: 0.4358...
Epoch 1/1... Batch 3479/6331... Discriminator Loss: 1.3959... Generator Loss: 0.4377...
Epoch 1/1... Batch 3489/6331... Discriminator Loss: 1.4054... Generator Loss: 0.4319...
Epoch 1/1... Batch 3499/6331... Discriminator Loss: 1.4142... Generator Loss: 0.4371...
Epoch 1/1... Batch 3509/6331... Discriminator Loss: 1.3918... Generator Loss: 0.4173...
Epoch 1/1... Batch 3519/6331... Discriminator Loss: 1.3686... Generator Loss: 0.4306...
Epoch 1/1... Batch 3529/6331... Discriminator Loss: 1.3524... Generator Loss: 0.4307...
Epoch 1/1... Batch 3539/6331... Discriminator Loss: 1.4175... Generator Loss: 0.4288...
Epoch 1/1... Batch 3549/6331... Discriminator Loss: 1.3866... Generator Loss: 0.4364...
Epoch 1/1... Batch 3559/6331... Discriminator Loss: 1.4052... Generator Loss: 0.4261...
Epoch 1/1... Batch 3569/6331... Discriminator Loss: 1.3928... Generator Loss: 0.4142...
Epoch 1/1... Batch 3579/6331... Discriminator Loss: 1.4379... Generator Loss: 0.4248...
Epoch 1/1... Batch 3589/6331... Discriminator Loss: 1.3887... Generator Loss: 0.4225...
Epoch 1/1... Batch 3599/6331... Discriminator Loss: 1.3802... Generator Loss: 0.4263...
Epoch 1/1... Batch 3609/6331... Discriminator Loss: 1.4437... Generator Loss: 0.4424...
Epoch 1/1... Batch 3619/6331... Discriminator Loss: 1.3975... Generator Loss: 0.4360...
Epoch 1/1... Batch 3629/6331... Discriminator Loss: 1.4366... Generator Loss: 0.4141...
Epoch 1/1... Batch 3639/6331... Discriminator Loss: 1.3883... Generator Loss: 0.4372...
Epoch 1/1... Batch 3649/6331... Discriminator Loss: 1.4031... Generator Loss: 0.4203...
Epoch 1/1... Batch 3659/6331... Discriminator Loss: 1.3889... Generator Loss: 0.4461...
Epoch 1/1... Batch 3669/6331... Discriminator Loss: 1.4065... Generator Loss: 0.4212...
Epoch 1/1... Batch 3679/6331... Discriminator Loss: 1.3752... Generator Loss: 0.4229...
Epoch 1/1... Batch 3689/6331... Discriminator Loss: 1.4299... Generator Loss: 0.4327...
Epoch 1/1... Batch 3699/6331... Discriminator Loss: 1.4432... Generator Loss: 0.4396...
Epoch 1/1... Batch 3709/6331... Discriminator Loss: 1.4095... Generator Loss: 0.4203...
Epoch 1/1... Batch 3719/6331... Discriminator Loss: 1.3930... Generator Loss: 0.4281...
Epoch 1/1... Batch 3729/6331... Discriminator Loss: 1.4099... Generator Loss: 0.4208...
Epoch 1/1... Batch 3739/6331... Discriminator Loss: 1.4848... Generator Loss: 0.4136...
Epoch 1/1... Batch 3749/6331... Discriminator Loss: 1.4310... Generator Loss: 0.4221...
Epoch 1/1... Batch 3759/6331... Discriminator Loss: 1.4897... Generator Loss: 0.4253...
Epoch 1/1... Batch 3769/6331... Discriminator Loss: 1.4079... Generator Loss: 0.4256...
Epoch 1/1... Batch 3779/6331... Discriminator Loss: 1.3787... Generator Loss: 0.4273...
Epoch 1/1... Batch 3789/6331... Discriminator Loss: 1.4175... Generator Loss: 0.4100...
Epoch 1/1... Batch 3799/6331... Discriminator Loss: 1.4379... Generator Loss: 0.4471...
Epoch 1/1... Batch 3809/6331... Discriminator Loss: 1.3991... Generator Loss: 0.4251...
Epoch 1/1... Batch 3819/6331... Discriminator Loss: 1.4275... Generator Loss: 0.4249...
Epoch 1/1... Batch 3829/6331... Discriminator Loss: 1.4122... Generator Loss: 0.4357...
Epoch 1/1... Batch 3839/6331... Discriminator Loss: 1.3561... Generator Loss: 0.4559...
Epoch 1/1... Batch 3849/6331... Discriminator Loss: 1.4033... Generator Loss: 0.4423...
Epoch 1/1... Batch 3859/6331... Discriminator Loss: 1.4850... Generator Loss: 0.4212...
Epoch 1/1... Batch 3869/6331... Discriminator Loss: 1.3812... Generator Loss: 0.4303...
Epoch 1/1... Batch 3879/6331... Discriminator Loss: 1.3839... Generator Loss: 0.4470...
Epoch 1/1... Batch 3889/6331... Discriminator Loss: 1.3319... Generator Loss: 0.4297...
Epoch 1/1... Batch 3899/6331... Discriminator Loss: 1.4593... Generator Loss: 0.4207...
Epoch 1/1... Batch 3909/6331... Discriminator Loss: 1.4728... Generator Loss: 0.4214...
Epoch 1/1... Batch 3919/6331... Discriminator Loss: 1.4081... Generator Loss: 0.4310...
Epoch 1/1... Batch 3929/6331... Discriminator Loss: 1.4470... Generator Loss: 0.4293...
Epoch 1/1... Batch 3939/6331... Discriminator Loss: 1.4009... Generator Loss: 0.4489...
Epoch 1/1... Batch 3949/6331... Discriminator Loss: 1.4239... Generator Loss: 0.4335...
Epoch 1/1... Batch 3959/6331... Discriminator Loss: 1.4479... Generator Loss: 0.4194...
Epoch 1/1... Batch 3969/6331... Discriminator Loss: 1.3821... Generator Loss: 0.4383...
Epoch 1/1... Batch 3979/6331... Discriminator Loss: 1.4854... Generator Loss: 0.4284...
Epoch 1/1... Batch 3989/6331... Discriminator Loss: 1.3763... Generator Loss: 0.4416...
Epoch 1/1... Batch 3999/6331... Discriminator Loss: 1.4149... Generator Loss: 0.4474...
Epoch 1/1... Batch 4009/6331... Discriminator Loss: 1.4082... Generator Loss: 0.4228...
Epoch 1/1... Batch 4019/6331... Discriminator Loss: 1.4435... Generator Loss: 0.4209...
Epoch 1/1... Batch 4029/6331... Discriminator Loss: 1.4437... Generator Loss: 0.4025...
Epoch 1/1... Batch 4039/6331... Discriminator Loss: 1.3571... Generator Loss: 0.4434...
Epoch 1/1... Batch 4049/6331... Discriminator Loss: 1.4195... Generator Loss: 0.4381...
Epoch 1/1... Batch 4059/6331... Discriminator Loss: 1.3620... Generator Loss: 0.4281...
Epoch 1/1... Batch 4069/6331... Discriminator Loss: 1.4158... Generator Loss: 0.4274...
Epoch 1/1... Batch 4079/6331... Discriminator Loss: 1.3962... Generator Loss: 0.4298...
Epoch 1/1... Batch 4089/6331... Discriminator Loss: 1.3591... Generator Loss: 0.4261...
Epoch 1/1... Batch 4099/6331... Discriminator Loss: 1.3633... Generator Loss: 0.4312...
Epoch 1/1... Batch 4109/6331... Discriminator Loss: 1.4482... Generator Loss: 0.4194...
Epoch 1/1... Batch 4119/6331... Discriminator Loss: 1.4158... Generator Loss: 0.4278...
Epoch 1/1... Batch 4129/6331... Discriminator Loss: 1.3723... Generator Loss: 0.4202...
Epoch 1/1... Batch 4139/6331... Discriminator Loss: 1.4911... Generator Loss: 0.4110...
Epoch 1/1... Batch 4149/6331... Discriminator Loss: 1.3363... Generator Loss: 0.4535...
Epoch 1/1... Batch 4159/6331... Discriminator Loss: 1.3545... Generator Loss: 0.4425...
Epoch 1/1... Batch 4169/6331... Discriminator Loss: 1.4455... Generator Loss: 0.4235...
Epoch 1/1... Batch 4179/6331... Discriminator Loss: 1.4116... Generator Loss: 0.4257...
Epoch 1/1... Batch 4189/6331... Discriminator Loss: 1.4513... Generator Loss: 0.4320...
Epoch 1/1... Batch 4199/6331... Discriminator Loss: 1.4273... Generator Loss: 0.4189...
Epoch 1/1... Batch 4209/6331... Discriminator Loss: 1.4522... Generator Loss: 0.4103...
Epoch 1/1... Batch 4219/6331... Discriminator Loss: 1.3889... Generator Loss: 0.4552...
Epoch 1/1... Batch 4229/6331... Discriminator Loss: 1.4545... Generator Loss: 0.4005...
Epoch 1/1... Batch 4239/6331... Discriminator Loss: 1.3764... Generator Loss: 0.4298...
Epoch 1/1... Batch 4249/6331... Discriminator Loss: 1.4516... Generator Loss: 0.4278...
Epoch 1/1... Batch 4259/6331... Discriminator Loss: 1.3782... Generator Loss: 0.4332...
Epoch 1/1... Batch 4269/6331... Discriminator Loss: 1.3562... Generator Loss: 0.4236...
Epoch 1/1... Batch 4279/6331... Discriminator Loss: 1.4916... Generator Loss: 0.4265...
Epoch 1/1... Batch 4289/6331... Discriminator Loss: 1.3748... Generator Loss: 0.4295...
Epoch 1/1... Batch 4299/6331... Discriminator Loss: 1.3825... Generator Loss: 0.4249...
Epoch 1/1... Batch 4309/6331... Discriminator Loss: 1.3789... Generator Loss: 0.4286...
Epoch 1/1... Batch 4319/6331... Discriminator Loss: 1.3738... Generator Loss: 0.4452...
Epoch 1/1... Batch 4329/6331... Discriminator Loss: 1.4306... Generator Loss: 0.4227...
Epoch 1/1... Batch 4339/6331... Discriminator Loss: 1.4255... Generator Loss: 0.4383...
Epoch 1/1... Batch 4349/6331... Discriminator Loss: 1.3826... Generator Loss: 0.4432...
Epoch 1/1... Batch 4359/6331... Discriminator Loss: 1.3167... Generator Loss: 0.4407...
Epoch 1/1... Batch 4369/6331... Discriminator Loss: 1.3640... Generator Loss: 0.4361...
Epoch 1/1... Batch 4379/6331... Discriminator Loss: 1.4232... Generator Loss: 0.4112...
Epoch 1/1... Batch 4389/6331... Discriminator Loss: 1.4677... Generator Loss: 0.4159...
Epoch 1/1... Batch 4399/6331... Discriminator Loss: 1.3603... Generator Loss: 0.4380...
Epoch 1/1... Batch 4409/6331... Discriminator Loss: 1.4134... Generator Loss: 0.4306...
Epoch 1/1... Batch 4419/6331... Discriminator Loss: 1.4068... Generator Loss: 0.4360...
Epoch 1/1... Batch 4429/6331... Discriminator Loss: 1.3670... Generator Loss: 0.4367...
Epoch 1/1... Batch 4439/6331... Discriminator Loss: 1.3208... Generator Loss: 0.4524...
Epoch 1/1... Batch 4449/6331... Discriminator Loss: 1.3987... Generator Loss: 0.4386...
Epoch 1/1... Batch 4459/6331... Discriminator Loss: 1.4350... Generator Loss: 0.4427...
Epoch 1/1... Batch 4469/6331... Discriminator Loss: 1.3697... Generator Loss: 0.4478...
Epoch 1/1... Batch 4479/6331... Discriminator Loss: 1.3990... Generator Loss: 0.4414...
Epoch 1/1... Batch 4489/6331... Discriminator Loss: 1.4709... Generator Loss: 0.4177...
Epoch 1/1... Batch 4499/6331... Discriminator Loss: 1.3714... Generator Loss: 0.4311...
Epoch 1/1... Batch 4509/6331... Discriminator Loss: 1.3931... Generator Loss: 0.4393...
Epoch 1/1... Batch 4519/6331... Discriminator Loss: 1.4313... Generator Loss: 0.4342...
Epoch 1/1... Batch 4529/6331... Discriminator Loss: 1.3840... Generator Loss: 0.4318...
Epoch 1/1... Batch 4539/6331... Discriminator Loss: 1.4115... Generator Loss: 0.4302...
Epoch 1/1... Batch 4549/6331... Discriminator Loss: 1.3514... Generator Loss: 0.4428...
Epoch 1/1... Batch 4559/6331... Discriminator Loss: 1.4441... Generator Loss: 0.4301...
Epoch 1/1... Batch 4569/6331... Discriminator Loss: 1.4135... Generator Loss: 0.3948...
Epoch 1/1... Batch 4579/6331... Discriminator Loss: 1.3467... Generator Loss: 0.4356...
Epoch 1/1... Batch 4589/6331... Discriminator Loss: 1.4063... Generator Loss: 0.4416...
Epoch 1/1... Batch 4599/6331... Discriminator Loss: 1.4319... Generator Loss: 0.4344...
Epoch 1/1... Batch 4609/6331... Discriminator Loss: 1.4108... Generator Loss: 0.4489...
Epoch 1/1... Batch 4619/6331... Discriminator Loss: 1.3510... Generator Loss: 0.4588...
Epoch 1/1... Batch 4629/6331... Discriminator Loss: 1.4194... Generator Loss: 0.4262...
Epoch 1/1... Batch 4639/6331... Discriminator Loss: 1.4206... Generator Loss: 0.4174...
Epoch 1/1... Batch 4649/6331... Discriminator Loss: 1.3378... Generator Loss: 0.4487...
Epoch 1/1... Batch 4659/6331... Discriminator Loss: 1.4269... Generator Loss: 0.4383...
Epoch 1/1... Batch 4669/6331... Discriminator Loss: 1.4157... Generator Loss: 0.4338...
Epoch 1/1... Batch 4679/6331... Discriminator Loss: 1.4049... Generator Loss: 0.4260...
Epoch 1/1... Batch 4689/6331... Discriminator Loss: 1.3177... Generator Loss: 0.4410...
Epoch 1/1... Batch 4699/6331... Discriminator Loss: 1.4589... Generator Loss: 0.4275...
Epoch 1/1... Batch 4709/6331... Discriminator Loss: 1.3934... Generator Loss: 0.4467...
Epoch 1/1... Batch 4719/6331... Discriminator Loss: 1.4517... Generator Loss: 0.4138...
Epoch 1/1... Batch 4729/6331... Discriminator Loss: 1.4829... Generator Loss: 0.4209...
Epoch 1/1... Batch 4739/6331... Discriminator Loss: 1.3657... Generator Loss: 0.4343...
Epoch 1/1... Batch 4749/6331... Discriminator Loss: 1.4628... Generator Loss: 0.4312...
Epoch 1/1... Batch 4759/6331... Discriminator Loss: 1.3393... Generator Loss: 0.4399...
Epoch 1/1... Batch 4769/6331... Discriminator Loss: 1.3532... Generator Loss: 0.4220...
Epoch 1/1... Batch 4779/6331... Discriminator Loss: 1.4042... Generator Loss: 0.4305...
Epoch 1/1... Batch 4789/6331... Discriminator Loss: 1.3845... Generator Loss: 0.4463...
Epoch 1/1... Batch 4799/6331... Discriminator Loss: 1.3196... Generator Loss: 0.4292...
Epoch 1/1... Batch 4809/6331... Discriminator Loss: 1.3435... Generator Loss: 0.4382...
Epoch 1/1... Batch 4819/6331... Discriminator Loss: 1.4093... Generator Loss: 0.4393...
Epoch 1/1... Batch 4829/6331... Discriminator Loss: 1.4414... Generator Loss: 0.4243...
Epoch 1/1... Batch 4839/6331... Discriminator Loss: 1.2944... Generator Loss: 0.4507...
Epoch 1/1... Batch 4849/6331... Discriminator Loss: 1.3455... Generator Loss: 0.4416...
Epoch 1/1... Batch 4859/6331... Discriminator Loss: 1.4233... Generator Loss: 0.4355...
Epoch 1/1... Batch 4869/6331... Discriminator Loss: 1.4488... Generator Loss: 0.4225...
Epoch 1/1... Batch 4879/6331... Discriminator Loss: 1.3700... Generator Loss: 0.4409...
Epoch 1/1... Batch 4889/6331... Discriminator Loss: 1.3922... Generator Loss: 0.4218...
Epoch 1/1... Batch 4899/6331... Discriminator Loss: 1.3985... Generator Loss: 0.4184...
Epoch 1/1... Batch 4909/6331... Discriminator Loss: 1.4115... Generator Loss: 0.4306...
Epoch 1/1... Batch 4919/6331... Discriminator Loss: 1.4032... Generator Loss: 0.4240...
Epoch 1/1... Batch 4929/6331... Discriminator Loss: 1.4073... Generator Loss: 0.4368...
Epoch 1/1... Batch 4939/6331... Discriminator Loss: 1.4201... Generator Loss: 0.4316...
Epoch 1/1... Batch 4949/6331... Discriminator Loss: 1.4171... Generator Loss: 0.4414...
Epoch 1/1... Batch 4959/6331... Discriminator Loss: 1.3884... Generator Loss: 0.4317...
Epoch 1/1... Batch 4969/6331... Discriminator Loss: 1.4084... Generator Loss: 0.4255...
Epoch 1/1... Batch 4979/6331... Discriminator Loss: 1.4374... Generator Loss: 0.4288...
Epoch 1/1... Batch 4989/6331... Discriminator Loss: 1.4288... Generator Loss: 0.4265...
Epoch 1/1... Batch 4999/6331... Discriminator Loss: 1.3220... Generator Loss: 0.4547...
Epoch 1/1... Batch 5009/6331... Discriminator Loss: 1.4620... Generator Loss: 0.4092...
Epoch 1/1... Batch 5019/6331... Discriminator Loss: 1.3721... Generator Loss: 0.4320...
Epoch 1/1... Batch 5029/6331... Discriminator Loss: 1.3749... Generator Loss: 0.4458...
Epoch 1/1... Batch 5039/6331... Discriminator Loss: 1.3660... Generator Loss: 0.4298...
Epoch 1/1... Batch 5049/6331... Discriminator Loss: 1.4158... Generator Loss: 0.4242...
Epoch 1/1... Batch 5059/6331... Discriminator Loss: 1.3477... Generator Loss: 0.4496...
Epoch 1/1... Batch 5069/6331... Discriminator Loss: 1.4115... Generator Loss: 0.4129...
Epoch 1/1... Batch 5079/6331... Discriminator Loss: 1.4019... Generator Loss: 0.4255...
Epoch 1/1... Batch 5089/6331... Discriminator Loss: 1.3669... Generator Loss: 0.4312...
Epoch 1/1... Batch 5099/6331... Discriminator Loss: 1.3649... Generator Loss: 0.4321...
Epoch 1/1... Batch 5109/6331... Discriminator Loss: 1.3791... Generator Loss: 0.4344...
Epoch 1/1... Batch 5119/6331... Discriminator Loss: 1.4110... Generator Loss: 0.4308...
Epoch 1/1... Batch 5129/6331... Discriminator Loss: 1.4060... Generator Loss: 0.4208...
Epoch 1/1... Batch 5139/6331... Discriminator Loss: 1.3608... Generator Loss: 0.4308...
Epoch 1/1... Batch 5149/6331... Discriminator Loss: 1.3166... Generator Loss: 0.4526...
Epoch 1/1... Batch 5159/6331... Discriminator Loss: 1.3886... Generator Loss: 0.4210...
Epoch 1/1... Batch 5169/6331... Discriminator Loss: 1.4251... Generator Loss: 0.4416...
Epoch 1/1... Batch 5179/6331... Discriminator Loss: 1.3592... Generator Loss: 0.4425...
Epoch 1/1... Batch 5189/6331... Discriminator Loss: 1.4053... Generator Loss: 0.4249...
Epoch 1/1... Batch 5199/6331... Discriminator Loss: 1.3784... Generator Loss: 0.4435...
Epoch 1/1... Batch 5209/6331... Discriminator Loss: 1.3929... Generator Loss: 0.4318...
Epoch 1/1... Batch 5219/6331... Discriminator Loss: 1.3709... Generator Loss: 0.4312...
Epoch 1/1... Batch 5229/6331... Discriminator Loss: 1.4259... Generator Loss: 0.4453...
Epoch 1/1... Batch 5239/6331... Discriminator Loss: 1.3946... Generator Loss: 0.4462...
Epoch 1/1... Batch 5249/6331... Discriminator Loss: 1.4347... Generator Loss: 0.4246...
Epoch 1/1... Batch 5259/6331... Discriminator Loss: 1.3531... Generator Loss: 0.4496...
Epoch 1/1... Batch 5269/6331... Discriminator Loss: 1.4159... Generator Loss: 0.4158...
Epoch 1/1... Batch 5279/6331... Discriminator Loss: 1.3715... Generator Loss: 0.4270...
Epoch 1/1... Batch 5289/6331... Discriminator Loss: 1.3553... Generator Loss: 0.4389...
Epoch 1/1... Batch 5299/6331... Discriminator Loss: 1.4221... Generator Loss: 0.4426...
Epoch 1/1... Batch 5309/6331... Discriminator Loss: 1.4432... Generator Loss: 0.4391...
Epoch 1/1... Batch 5319/6331... Discriminator Loss: 1.4075... Generator Loss: 0.4168...
Epoch 1/1... Batch 5329/6331... Discriminator Loss: 1.4389... Generator Loss: 0.4276...
Epoch 1/1... Batch 5339/6331... Discriminator Loss: 1.3933... Generator Loss: 0.4283...
Epoch 1/1... Batch 5349/6331... Discriminator Loss: 1.4280... Generator Loss: 0.4371...
Epoch 1/1... Batch 5359/6331... Discriminator Loss: 1.3495... Generator Loss: 0.4403...
Epoch 1/1... Batch 5369/6331... Discriminator Loss: 1.4646... Generator Loss: 0.4257...
Epoch 1/1... Batch 5379/6331... Discriminator Loss: 1.3591... Generator Loss: 0.4375...
Epoch 1/1... Batch 5389/6331... Discriminator Loss: 1.3723... Generator Loss: 0.4414...
Epoch 1/1... Batch 5399/6331... Discriminator Loss: 1.4266... Generator Loss: 0.4316...
Epoch 1/1... Batch 5409/6331... Discriminator Loss: 1.3612... Generator Loss: 0.4225...
Epoch 1/1... Batch 5419/6331... Discriminator Loss: 1.3519... Generator Loss: 0.4373...
Epoch 1/1... Batch 5429/6331... Discriminator Loss: 1.3015... Generator Loss: 0.4500...
Epoch 1/1... Batch 5439/6331... Discriminator Loss: 1.4547... Generator Loss: 0.4119...
Epoch 1/1... Batch 5449/6331... Discriminator Loss: 1.4562... Generator Loss: 0.4460...
Epoch 1/1... Batch 5459/6331... Discriminator Loss: 1.4538... Generator Loss: 0.4331...
Epoch 1/1... Batch 5469/6331... Discriminator Loss: 1.4099... Generator Loss: 0.4280...
Epoch 1/1... Batch 5479/6331... Discriminator Loss: 1.3966... Generator Loss: 0.4195...
Epoch 1/1... Batch 5489/6331... Discriminator Loss: 1.4486... Generator Loss: 0.4114...
Epoch 1/1... Batch 5499/6331... Discriminator Loss: 1.3754... Generator Loss: 0.4414...
Epoch 1/1... Batch 5509/6331... Discriminator Loss: 1.3701... Generator Loss: 0.4339...
Epoch 1/1... Batch 5519/6331... Discriminator Loss: 1.3670... Generator Loss: 0.4465...
Epoch 1/1... Batch 5529/6331... Discriminator Loss: 1.3627... Generator Loss: 0.4295...
Epoch 1/1... Batch 5539/6331... Discriminator Loss: 1.3635... Generator Loss: 0.4374...
Epoch 1/1... Batch 5549/6331... Discriminator Loss: 1.4164... Generator Loss: 0.4327...
Epoch 1/1... Batch 5559/6331... Discriminator Loss: 1.4250... Generator Loss: 0.4265...
Epoch 1/1... Batch 5569/6331... Discriminator Loss: 1.4070... Generator Loss: 0.4164...
Epoch 1/1... Batch 5579/6331... Discriminator Loss: 1.3580... Generator Loss: 0.4479...
Epoch 1/1... Batch 5589/6331... Discriminator Loss: 1.4265... Generator Loss: 0.4372...
Epoch 1/1... Batch 5599/6331... Discriminator Loss: 1.4791... Generator Loss: 0.4249...
Epoch 1/1... Batch 5609/6331... Discriminator Loss: 1.4080... Generator Loss: 0.4411...
Epoch 1/1... Batch 5619/6331... Discriminator Loss: 1.3569... Generator Loss: 0.4266...
Epoch 1/1... Batch 5629/6331... Discriminator Loss: 1.4039... Generator Loss: 0.4315...
Epoch 1/1... Batch 5639/6331... Discriminator Loss: 1.4457... Generator Loss: 0.4304...
Epoch 1/1... Batch 5649/6331... Discriminator Loss: 1.3645... Generator Loss: 0.4443...
Epoch 1/1... Batch 5659/6331... Discriminator Loss: 1.3868... Generator Loss: 0.4314...
Epoch 1/1... Batch 5669/6331... Discriminator Loss: 1.3650... Generator Loss: 0.4342...
Epoch 1/1... Batch 5679/6331... Discriminator Loss: 1.3569... Generator Loss: 0.4299...
Epoch 1/1... Batch 5689/6331... Discriminator Loss: 1.4230... Generator Loss: 0.4421...
Epoch 1/1... Batch 5699/6331... Discriminator Loss: 1.3719... Generator Loss: 0.4431...
Epoch 1/1... Batch 5709/6331... Discriminator Loss: 1.3533... Generator Loss: 0.4400...
Epoch 1/1... Batch 5719/6331... Discriminator Loss: 1.4174... Generator Loss: 0.4299...
Epoch 1/1... Batch 5729/6331... Discriminator Loss: 1.4309... Generator Loss: 0.4339...
Epoch 1/1... Batch 5739/6331... Discriminator Loss: 1.4350... Generator Loss: 0.4316...
Epoch 1/1... Batch 5749/6331... Discriminator Loss: 1.3508... Generator Loss: 0.4468...
Epoch 1/1... Batch 5759/6331... Discriminator Loss: 1.3122... Generator Loss: 0.4442...
Epoch 1/1... Batch 5769/6331... Discriminator Loss: 1.3467... Generator Loss: 0.4301...
Epoch 1/1... Batch 5779/6331... Discriminator Loss: 1.3836... Generator Loss: 0.4323...
Epoch 1/1... Batch 5789/6331... Discriminator Loss: 1.4677... Generator Loss: 0.4395...
Epoch 1/1... Batch 5799/6331... Discriminator Loss: 1.4175... Generator Loss: 0.4257...
Epoch 1/1... Batch 5809/6331... Discriminator Loss: 1.3801... Generator Loss: 0.4395...
Epoch 1/1... Batch 5819/6331... Discriminator Loss: 1.3839... Generator Loss: 0.4445...
Epoch 1/1... Batch 5829/6331... Discriminator Loss: 1.3423... Generator Loss: 0.4331...
Epoch 1/1... Batch 5839/6331... Discriminator Loss: 1.3947... Generator Loss: 0.4404...
Epoch 1/1... Batch 5849/6331... Discriminator Loss: 1.4447... Generator Loss: 0.4236...
Epoch 1/1... Batch 5859/6331... Discriminator Loss: 1.3615... Generator Loss: 0.4438...
Epoch 1/1... Batch 5869/6331... Discriminator Loss: 1.4269... Generator Loss: 0.4333...
Epoch 1/1... Batch 5879/6331... Discriminator Loss: 1.3969... Generator Loss: 0.4499...
Epoch 1/1... Batch 5889/6331... Discriminator Loss: 1.3614... Generator Loss: 0.4265...
Epoch 1/1... Batch 5899/6331... Discriminator Loss: 1.3974... Generator Loss: 0.4376...
Epoch 1/1... Batch 5909/6331... Discriminator Loss: 1.4368... Generator Loss: 0.4310...
Epoch 1/1... Batch 5919/6331... Discriminator Loss: 1.3727... Generator Loss: 0.4355...
Epoch 1/1... Batch 5929/6331... Discriminator Loss: 1.3977... Generator Loss: 0.4429...
Epoch 1/1... Batch 5939/6331... Discriminator Loss: 1.3651... Generator Loss: 0.4379...
Epoch 1/1... Batch 5949/6331... Discriminator Loss: 1.3406... Generator Loss: 0.4406...
Epoch 1/1... Batch 5959/6331... Discriminator Loss: 1.3718... Generator Loss: 0.4393...
Epoch 1/1... Batch 5969/6331... Discriminator Loss: 1.3202... Generator Loss: 0.4516...
Epoch 1/1... Batch 5979/6331... Discriminator Loss: 1.4081... Generator Loss: 0.4388...
Epoch 1/1... Batch 5989/6331... Discriminator Loss: 1.4067... Generator Loss: 0.4322...
Epoch 1/1... Batch 5999/6331... Discriminator Loss: 1.3638... Generator Loss: 0.4330...
Epoch 1/1... Batch 6009/6331... Discriminator Loss: 1.3757... Generator Loss: 0.4167...
Epoch 1/1... Batch 6019/6331... Discriminator Loss: 1.3440... Generator Loss: 0.4516...
Epoch 1/1... Batch 6029/6331... Discriminator Loss: 1.4038... Generator Loss: 0.4237...
Epoch 1/1... Batch 6039/6331... Discriminator Loss: 1.2054... Generator Loss: 0.4565...
Epoch 1/1... Batch 6049/6331... Discriminator Loss: 1.4062... Generator Loss: 0.4275...
Epoch 1/1... Batch 6059/6331... Discriminator Loss: 1.4081... Generator Loss: 0.4227...
Epoch 1/1... Batch 6069/6331... Discriminator Loss: 1.3472... Generator Loss: 0.4421...
Epoch 1/1... Batch 6079/6331... Discriminator Loss: 1.3871... Generator Loss: 0.4325...
Epoch 1/1... Batch 6089/6331... Discriminator Loss: 1.4224... Generator Loss: 0.4472...
Epoch 1/1... Batch 6099/6331... Discriminator Loss: 1.3705... Generator Loss: 0.4209...
Epoch 1/1... Batch 6109/6331... Discriminator Loss: 1.3733... Generator Loss: 0.4139...
Epoch 1/1... Batch 6119/6331... Discriminator Loss: 1.3837... Generator Loss: 0.4342...
Epoch 1/1... Batch 6129/6331... Discriminator Loss: 1.3999... Generator Loss: 0.4490...
Epoch 1/1... Batch 6139/6331... Discriminator Loss: 1.3439... Generator Loss: 0.4342...
Epoch 1/1... Batch 6149/6331... Discriminator Loss: 1.3698... Generator Loss: 0.4320...
Epoch 1/1... Batch 6159/6331... Discriminator Loss: 1.4099... Generator Loss: 0.4154...
Epoch 1/1... Batch 6169/6331... Discriminator Loss: 1.3886... Generator Loss: 0.4482...
Epoch 1/1... Batch 6179/6331... Discriminator Loss: 1.3237... Generator Loss: 0.4426...
Epoch 1/1... Batch 6189/6331... Discriminator Loss: 1.4202... Generator Loss: 0.4366...
Epoch 1/1... Batch 6199/6331... Discriminator Loss: 1.3669... Generator Loss: 0.4132...
Epoch 1/1... Batch 6209/6331... Discriminator Loss: 1.3716... Generator Loss: 0.4296...
Epoch 1/1... Batch 6219/6331... Discriminator Loss: 1.3701... Generator Loss: 0.4484...
Epoch 1/1... Batch 6229/6331... Discriminator Loss: 1.4291... Generator Loss: 0.4202...
Epoch 1/1... Batch 6239/6331... Discriminator Loss: 1.3323... Generator Loss: 0.4452...
Epoch 1/1... Batch 6249/6331... Discriminator Loss: 1.3720... Generator Loss: 0.4422...
Epoch 1/1... Batch 6259/6331... Discriminator Loss: 1.4335... Generator Loss: 0.4224...
Epoch 1/1... Batch 6269/6331... Discriminator Loss: 1.3614... Generator Loss: 0.4507...
Epoch 1/1... Batch 6279/6331... Discriminator Loss: 1.3679... Generator Loss: 0.4452...
Epoch 1/1... Batch 6289/6331... Discriminator Loss: 1.4432... Generator Loss: 0.4269...
Epoch 1/1... Batch 6299/6331... Discriminator Loss: 1.3877... Generator Loss: 0.4364...
Epoch 1/1... Batch 6309/6331... Discriminator Loss: 1.4170... Generator Loss: 0.4253...
Epoch 1/1... Batch 6319/6331... Discriminator Loss: 1.3478... Generator Loss: 0.4399...
Epoch 1/1... Batch 6329/6331... Discriminator Loss: 1.4046... Generator Loss: 0.4327...

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.