对一周不同时段(工作日、节假日和双休日)的骑车人数进行聚类分析
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-dark')
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture
In [2]:
from jupyterworkflow.data import get_fremont_data
data = get_fremont_data()
pivoted = data.pivot_table('Total', index=data.index.time, columns=data.index.date)
pivoted.plot(legend=False, alpha=0.01);
In [3]:
X = pivoted.fillna(0).T.values
X.shape
Out[3]:
In [4]:
X2 = PCA(2, svd_solver='full').fit_transform(X)
In [5]:
X2.shape
Out[5]:
In [6]:
plt.scatter(X2[:, 0], X2[:, 1]);
In [7]:
gmm = GaussianMixture(2).fit(X)
labels = gmm.predict(X)
labels
Out[7]:
In [8]:
plt.scatter(X2[:, 0], X2[:, 1], c=labels, cmap='rainbow');
plt.colorbar();
In [9]:
fig, ax = plt.subplots(1, 2, figsize=(14, 4))
pivoted.T[labels == 0].T.plot(legend=False, alpha=0.1, ax=ax[0]);
pivoted.T[labels == 1].T.plot(legend=False, alpha=0.1, ax=ax[1]);
ax[0].set_title('Pupple Cluster')
ax[1].set_title('Red Cluster');
In [10]:
dayofweek = pd.DatetimeIndex(pivoted.columns).dayofweek
dayofweek
Out[10]:
下图是双休日与节假日的自行车车数
In [11]:
plt.scatter(X2[:, 0], X2[:, 1], c=dayofweek, cmap='rainbow');
plt.colorbar();
In [1]:
dates = pd.DatetimeIndex(pivoted.columns)
dates[(labels==1) & (dayofweek<5)]