Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'
tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    return (x - x.min())/(x.max() - x.min())

tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [4]:
import sklearn.preprocessing

label_binarizer = sklearn.preprocessing.LabelBinarizer()
label_binarizer.fit(range(10))

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    return label_binarizer.transform(x)


tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [5]:
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [6]:
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [7]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    return tf.placeholder(tf.float32, [None, image_shape[0], image_shape[1], image_shape[2]], 'x')


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    return tf.placeholder(tf.float32, [None, n_classes], 'y')


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    return tf.placeholder(tf.float32, name='keep_prob')


tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [8]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides, ):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    weights = tf.Variable(tf.truncated_normal([conv_ksize[0], conv_ksize[1], x_tensor.get_shape().as_list()[-1], conv_num_outputs], stddev=0.1))
    bias = tf.Variable(tf.zeros([conv_num_outputs]))
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x_tensor, weights, [1, conv_strides[0], conv_strides[1], 1], 'SAME'), bias))
    return tf.nn.max_pool(conv1, [1, pool_ksize[0], pool_ksize[1], 1], [1, pool_strides[0], pool_strides[1], 1], 'SAME')
    
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [9]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    size = x_tensor.get_shape().as_list()
    return tf.reshape(x_tensor, shape=[-1, size[1] * size[2] * size[3]])

tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [10]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    weights = tf.Variable(tf.truncated_normal([x_tensor.get_shape().as_list()[1], num_outputs], stddev=0.1))
    bias = tf.Variable(tf.zeros([num_outputs]))
    
    return tf.nn.relu(tf.nn.bias_add(tf.matmul(x_tensor, weights), bias))

tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [11]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    weights = tf.Variable(tf.truncated_normal([x_tensor.get_shape().as_list()[1], num_outputs], stddev=0.1))
    bias = tf.Variable(tf.zeros([num_outputs]))
    
    return tf.nn.bias_add(tf.matmul(x_tensor, weights), bias)

tests.test_output(output)


Tests Passed

In [12]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    
    conv1 = conv2d_maxpool(x, 64, [2, 2], [1, 1], [2, 2], [2, 2])
    conv1 = conv2d_maxpool(conv1, 128, [3, 3], [1, 1], [2, 2], [2, 2])
    conv1 = conv2d_maxpool(conv1, 256, [3, 3], [1, 1], [2, 2], [2, 2])
    
    conv1 = flatten(conv1)
    

    conv1 = fully_conn(conv1, 2500)
    conv1 = tf.nn.dropout(conv1, keep_prob)
    
    return output(conv1, 10)

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [13]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    session.run(optimizer, feed_dict={x: feature_batch, y: label_batch , keep_prob: keep_probability})
    
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [14]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    cost_val = session.run(cost, feed_dict={x: feature_batch, y: label_batch , keep_prob: 1})
    accuracy_val = session.run(accuracy, feed_dict={x: valid_features, y: valid_labels , keep_prob: 1})
    print("Cost: {}   Accuracy: {}".format(cost_val, accuracy_val))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [15]:
# TODO: Tune Parameters
epochs = 50
batch_size = 256
keep_probability = 0.75

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [16]:
print('Checking the Training on a Single Batch...')


with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Cost: 1.887009859085083   Accuracy: 0.3611999750137329
Epoch  2, CIFAR-10 Batch 1:  Cost: 1.4334485530853271   Accuracy: 0.45079997181892395
Epoch  3, CIFAR-10 Batch 1:  Cost: 1.0266963243484497   Accuracy: 0.5039999485015869
Epoch  4, CIFAR-10 Batch 1:  Cost: 0.6985819339752197   Accuracy: 0.5309999585151672
Epoch  5, CIFAR-10 Batch 1:  Cost: 0.4291169047355652   Accuracy: 0.555199921131134
Epoch  6, CIFAR-10 Batch 1:  Cost: 0.24873483180999756   Accuracy: 0.5595999360084534
Epoch  7, CIFAR-10 Batch 1:  Cost: 0.2093193084001541   Accuracy: 0.5471999049186707
Epoch  8, CIFAR-10 Batch 1:  Cost: 0.14108389616012573   Accuracy: 0.5425999760627747
Epoch  9, CIFAR-10 Batch 1:  Cost: 0.14993621408939362   Accuracy: 0.5643999576568604
Epoch 10, CIFAR-10 Batch 1:  Cost: 0.09867171943187714   Accuracy: 0.5707999467849731
Epoch 11, CIFAR-10 Batch 1:  Cost: 0.04203975200653076   Accuracy: 0.5677999258041382
Epoch 12, CIFAR-10 Batch 1:  Cost: 0.04274659976363182   Accuracy: 0.5833999514579773
Epoch 13, CIFAR-10 Batch 1:  Cost: 0.046980131417512894   Accuracy: 0.5771999359130859
Epoch 14, CIFAR-10 Batch 1:  Cost: 0.04257863014936447   Accuracy: 0.5753998756408691
Epoch 15, CIFAR-10 Batch 1:  Cost: 0.05865419656038284   Accuracy: 0.5511999130249023
Epoch 16, CIFAR-10 Batch 1:  Cost: 0.013393803499639034   Accuracy: 0.5903999209403992
Epoch 17, CIFAR-10 Batch 1:  Cost: 0.009556892327964306   Accuracy: 0.5875998735427856
Epoch 18, CIFAR-10 Batch 1:  Cost: 0.005305830389261246   Accuracy: 0.6047998666763306
Epoch 19, CIFAR-10 Batch 1:  Cost: 0.011763518676161766   Accuracy: 0.6143998503684998
Epoch 20, CIFAR-10 Batch 1:  Cost: 0.007760278414934874   Accuracy: 0.6131999492645264
Epoch 21, CIFAR-10 Batch 1:  Cost: 0.00796337891370058   Accuracy: 0.5873998999595642
Epoch 22, CIFAR-10 Batch 1:  Cost: 0.014080350287258625   Accuracy: 0.5899999141693115
Epoch 23, CIFAR-10 Batch 1:  Cost: 0.007889573462307453   Accuracy: 0.5971999168395996
Epoch 24, CIFAR-10 Batch 1:  Cost: 0.0020998730324208736   Accuracy: 0.6041999459266663
Epoch 25, CIFAR-10 Batch 1:  Cost: 0.0017503530252724886   Accuracy: 0.6177999377250671
Epoch 26, CIFAR-10 Batch 1:  Cost: 0.0008307487005367875   Accuracy: 0.6209998726844788
Epoch 27, CIFAR-10 Batch 1:  Cost: 0.0010336379054933786   Accuracy: 0.6109999418258667
Epoch 28, CIFAR-10 Batch 1:  Cost: 0.0006530483369715512   Accuracy: 0.5925998687744141
Epoch 29, CIFAR-10 Batch 1:  Cost: 0.0009792158380150795   Accuracy: 0.6115999221801758
Epoch 30, CIFAR-10 Batch 1:  Cost: 0.00039859602111391723   Accuracy: 0.6209999322891235
Epoch 31, CIFAR-10 Batch 1:  Cost: 0.0012229385320097208   Accuracy: 0.6129999160766602
Epoch 32, CIFAR-10 Batch 1:  Cost: 0.0004318866122048348   Accuracy: 0.6185998916625977
Epoch 33, CIFAR-10 Batch 1:  Cost: 0.0016636636573821306   Accuracy: 0.6041998267173767
Epoch 34, CIFAR-10 Batch 1:  Cost: 0.00025213591288775206   Accuracy: 0.6167998909950256
Epoch 35, CIFAR-10 Batch 1:  Cost: 0.00020405353279784322   Accuracy: 0.6299998760223389
Epoch 36, CIFAR-10 Batch 1:  Cost: 0.00018454465316608548   Accuracy: 0.637799859046936
Epoch 37, CIFAR-10 Batch 1:  Cost: 0.00012962894106749445   Accuracy: 0.6385999321937561
Epoch 38, CIFAR-10 Batch 1:  Cost: 7.09211963112466e-05   Accuracy: 0.640799880027771
Epoch 39, CIFAR-10 Batch 1:  Cost: 6.65130719426088e-05   Accuracy: 0.6411998867988586
Epoch 40, CIFAR-10 Batch 1:  Cost: 5.4321477364283055e-05   Accuracy: 0.6377999186515808
Epoch 41, CIFAR-10 Batch 1:  Cost: 5.420625166152604e-05   Accuracy: 0.6401998996734619
Epoch 42, CIFAR-10 Batch 1:  Cost: 5.400896770879626e-05   Accuracy: 0.6423999071121216
Epoch 43, CIFAR-10 Batch 1:  Cost: 3.5410907003097236e-05   Accuracy: 0.642599880695343
Epoch 44, CIFAR-10 Batch 1:  Cost: 3.166038732160814e-05   Accuracy: 0.6429998278617859
Epoch 45, CIFAR-10 Batch 1:  Cost: 3.0265913665061817e-05   Accuracy: 0.6439999341964722
Epoch 46, CIFAR-10 Batch 1:  Cost: 2.4676588509464636e-05   Accuracy: 0.6417998671531677
Epoch 47, CIFAR-10 Batch 1:  Cost: 2.583215245977044e-05   Accuracy: 0.642599880695343
Epoch 48, CIFAR-10 Batch 1:  Cost: 2.4882143407012336e-05   Accuracy: 0.6435998678207397
Epoch 49, CIFAR-10 Batch 1:  Cost: 2.3689979570917785e-05   Accuracy: 0.6449998617172241
Epoch 50, CIFAR-10 Batch 1:  Cost: 2.314176526851952e-05   Accuracy: 0.6401998996734619

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [17]:
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Cost: 2.051206588745117   Accuracy: 0.36619997024536133
Epoch  1, CIFAR-10 Batch 2:  Cost: 1.3945238590240479   Accuracy: 0.4113999307155609
Epoch  1, CIFAR-10 Batch 3:  Cost: 1.121010661125183   Accuracy: 0.4971999526023865
Epoch  1, CIFAR-10 Batch 4:  Cost: 1.1563559770584106   Accuracy: 0.5275999307632446
Epoch  1, CIFAR-10 Batch 5:  Cost: 1.1237553358078003   Accuracy: 0.5633999109268188
Epoch  2, CIFAR-10 Batch 1:  Cost: 1.2723689079284668   Accuracy: 0.562999963760376
Epoch  2, CIFAR-10 Batch 2:  Cost: 0.8095828890800476   Accuracy: 0.5591999292373657
Epoch  2, CIFAR-10 Batch 3:  Cost: 0.6158396601676941   Accuracy: 0.5965999364852905
Epoch  2, CIFAR-10 Batch 4:  Cost: 0.7055609822273254   Accuracy: 0.6061998605728149
Epoch  2, CIFAR-10 Batch 5:  Cost: 0.7424969673156738   Accuracy: 0.6209998726844788
Epoch  3, CIFAR-10 Batch 1:  Cost: 0.7953800559043884   Accuracy: 0.612799882888794
Epoch  3, CIFAR-10 Batch 2:  Cost: 0.4339156150817871   Accuracy: 0.6167999505996704
Epoch  3, CIFAR-10 Batch 3:  Cost: 0.38278084993362427   Accuracy: 0.6085999608039856
Epoch  3, CIFAR-10 Batch 4:  Cost: 0.4094259440898895   Accuracy: 0.6529998779296875
Epoch  3, CIFAR-10 Batch 5:  Cost: 0.41879940032958984   Accuracy: 0.635999858379364
Epoch  4, CIFAR-10 Batch 1:  Cost: 0.46887409687042236   Accuracy: 0.6337999105453491
Epoch  4, CIFAR-10 Batch 2:  Cost: 0.295160174369812   Accuracy: 0.6237999200820923
Epoch  4, CIFAR-10 Batch 3:  Cost: 0.20225845277309418   Accuracy: 0.6551998853683472
Epoch  4, CIFAR-10 Batch 4:  Cost: 0.23723608255386353   Accuracy: 0.6563998460769653
Epoch  4, CIFAR-10 Batch 5:  Cost: 0.18780279159545898   Accuracy: 0.6523998975753784
Epoch  5, CIFAR-10 Batch 1:  Cost: 0.22407442331314087   Accuracy: 0.6529998779296875
Epoch  5, CIFAR-10 Batch 2:  Cost: 0.14642466604709625   Accuracy: 0.6291999220848083
Epoch  5, CIFAR-10 Batch 3:  Cost: 0.0843813493847847   Accuracy: 0.6779999136924744
Epoch  5, CIFAR-10 Batch 4:  Cost: 0.11578039824962616   Accuracy: 0.6709998250007629
Epoch  5, CIFAR-10 Batch 5:  Cost: 0.12998291850090027   Accuracy: 0.6529998779296875
Epoch  6, CIFAR-10 Batch 1:  Cost: 0.1498447209596634   Accuracy: 0.6769998073577881
Epoch  6, CIFAR-10 Batch 2:  Cost: 0.10535668581724167   Accuracy: 0.665199875831604
Epoch  6, CIFAR-10 Batch 3:  Cost: 0.05856894329190254   Accuracy: 0.6665998697280884
Epoch  6, CIFAR-10 Batch 4:  Cost: 0.15205997228622437   Accuracy: 0.6617999076843262
Epoch  6, CIFAR-10 Batch 5:  Cost: 0.07634035497903824   Accuracy: 0.6735998392105103
Epoch  7, CIFAR-10 Batch 1:  Cost: 0.07296856492757797   Accuracy: 0.6805998086929321
Epoch  7, CIFAR-10 Batch 2:  Cost: 0.049596481025218964   Accuracy: 0.6789999604225159
Epoch  7, CIFAR-10 Batch 3:  Cost: 0.06000201404094696   Accuracy: 0.6641998887062073
Epoch  7, CIFAR-10 Batch 4:  Cost: 0.08325932919979095   Accuracy: 0.665199875831604
Epoch  7, CIFAR-10 Batch 5:  Cost: 0.04092002287507057   Accuracy: 0.6871998310089111
Epoch  8, CIFAR-10 Batch 1:  Cost: 0.05145661160349846   Accuracy: 0.6907998919487
Epoch  8, CIFAR-10 Batch 2:  Cost: 0.04204476624727249   Accuracy: 0.6839998364448547
Epoch  8, CIFAR-10 Batch 3:  Cost: 0.033404357731342316   Accuracy: 0.6731998920440674
Epoch  8, CIFAR-10 Batch 4:  Cost: 0.03692835941910744   Accuracy: 0.7013998031616211
Epoch  8, CIFAR-10 Batch 5:  Cost: 0.027918484061956406   Accuracy: 0.6851999163627625
Epoch  9, CIFAR-10 Batch 1:  Cost: 0.04414786398410797   Accuracy: 0.6567999124526978
Epoch  9, CIFAR-10 Batch 2:  Cost: 0.01935962587594986   Accuracy: 0.6851998567581177
Epoch  9, CIFAR-10 Batch 3:  Cost: 0.01569214090704918   Accuracy: 0.6995999217033386
Epoch  9, CIFAR-10 Batch 4:  Cost: 0.032703667879104614   Accuracy: 0.6899998784065247
Epoch  9, CIFAR-10 Batch 5:  Cost: 0.018042773008346558   Accuracy: 0.6757999062538147
Epoch 10, CIFAR-10 Batch 1:  Cost: 0.028026634827256203   Accuracy: 0.6969998478889465
Epoch 10, CIFAR-10 Batch 2:  Cost: 0.013833682984113693   Accuracy: 0.7029998898506165
Epoch 10, CIFAR-10 Batch 3:  Cost: 0.012341273948550224   Accuracy: 0.6881998777389526
Epoch 10, CIFAR-10 Batch 4:  Cost: 0.02658776193857193   Accuracy: 0.7005999088287354
Epoch 10, CIFAR-10 Batch 5:  Cost: 0.020673207938671112   Accuracy: 0.6693998575210571
Epoch 11, CIFAR-10 Batch 1:  Cost: 0.025415528565645218   Accuracy: 0.6969999074935913
Epoch 11, CIFAR-10 Batch 2:  Cost: 0.008435646072030067   Accuracy: 0.6825999021530151
Epoch 11, CIFAR-10 Batch 3:  Cost: 0.009919674135744572   Accuracy: 0.7001999020576477
Epoch 11, CIFAR-10 Batch 4:  Cost: 0.010493794456124306   Accuracy: 0.707399845123291
Epoch 11, CIFAR-10 Batch 5:  Cost: 0.012937726452946663   Accuracy: 0.7061998844146729
Epoch 12, CIFAR-10 Batch 1:  Cost: 0.013851823285222054   Accuracy: 0.7083998918533325
Epoch 12, CIFAR-10 Batch 2:  Cost: 0.005867733154445887   Accuracy: 0.7115998268127441
Epoch 12, CIFAR-10 Batch 3:  Cost: 0.0071684736758470535   Accuracy: 0.6947999000549316
Epoch 12, CIFAR-10 Batch 4:  Cost: 0.011029912158846855   Accuracy: 0.7081998586654663
Epoch 12, CIFAR-10 Batch 5:  Cost: 0.00740025145933032   Accuracy: 0.7049999237060547
Epoch 13, CIFAR-10 Batch 1:  Cost: 0.009755331091582775   Accuracy: 0.7063998579978943
Epoch 13, CIFAR-10 Batch 2:  Cost: 0.01016267016530037   Accuracy: 0.6971999406814575
Epoch 13, CIFAR-10 Batch 3:  Cost: 0.005377671681344509   Accuracy: 0.7141998410224915
Epoch 13, CIFAR-10 Batch 4:  Cost: 0.008022073656320572   Accuracy: 0.7065998911857605
Epoch 13, CIFAR-10 Batch 5:  Cost: 0.005735047627240419   Accuracy: 0.6957998871803284
Epoch 14, CIFAR-10 Batch 1:  Cost: 0.00695300055667758   Accuracy: 0.7069998383522034
Epoch 14, CIFAR-10 Batch 2:  Cost: 0.0038138930685818195   Accuracy: 0.7131998538970947
Epoch 14, CIFAR-10 Batch 3:  Cost: 0.005342175718396902   Accuracy: 0.7057998180389404
Epoch 14, CIFAR-10 Batch 4:  Cost: 0.004782462026923895   Accuracy: 0.7029998898506165
Epoch 14, CIFAR-10 Batch 5:  Cost: 0.0022766622714698315   Accuracy: 0.7067998647689819
Epoch 15, CIFAR-10 Batch 1:  Cost: 0.010418922640383244   Accuracy: 0.6719999313354492
Epoch 15, CIFAR-10 Batch 2:  Cost: 0.0035423135850578547   Accuracy: 0.6881998777389526
Epoch 15, CIFAR-10 Batch 3:  Cost: 0.0015416932292282581   Accuracy: 0.7167998552322388
Epoch 15, CIFAR-10 Batch 4:  Cost: 0.0030037127435207367   Accuracy: 0.7023999094963074
Epoch 15, CIFAR-10 Batch 5:  Cost: 0.0038695388939231634   Accuracy: 0.6977999210357666
Epoch 16, CIFAR-10 Batch 1:  Cost: 0.008022329770028591   Accuracy: 0.6793999075889587
Epoch 16, CIFAR-10 Batch 2:  Cost: 0.0016986532136797905   Accuracy: 0.6903998851776123
Epoch 16, CIFAR-10 Batch 3:  Cost: 0.0009035708499141037   Accuracy: 0.7217998504638672
Epoch 16, CIFAR-10 Batch 4:  Cost: 0.0019445412326604128   Accuracy: 0.7221998572349548
Epoch 16, CIFAR-10 Batch 5:  Cost: 0.001912199892103672   Accuracy: 0.7001998424530029
Epoch 17, CIFAR-10 Batch 1:  Cost: 0.002987078158184886   Accuracy: 0.7071998119354248
Epoch 17, CIFAR-10 Batch 2:  Cost: 0.004739837255328894   Accuracy: 0.6957998871803284
Epoch 17, CIFAR-10 Batch 3:  Cost: 0.0006835437379777431   Accuracy: 0.710399866104126
Epoch 17, CIFAR-10 Batch 4:  Cost: 0.0011631050147116184   Accuracy: 0.7113999128341675
Epoch 17, CIFAR-10 Batch 5:  Cost: 0.0008106937748380005   Accuracy: 0.7101998329162598
Epoch 18, CIFAR-10 Batch 1:  Cost: 0.0018740496598184109   Accuracy: 0.7055999040603638
Epoch 18, CIFAR-10 Batch 2:  Cost: 0.0040328968316316605   Accuracy: 0.7159998416900635
Epoch 18, CIFAR-10 Batch 3:  Cost: 0.000797393498942256   Accuracy: 0.7115998864173889
Epoch 18, CIFAR-10 Batch 4:  Cost: 0.0020375563763082027   Accuracy: 0.7183998823165894
Epoch 18, CIFAR-10 Batch 5:  Cost: 0.0014692950062453747   Accuracy: 0.7127999067306519
Epoch 19, CIFAR-10 Batch 1:  Cost: 0.0035153268836438656   Accuracy: 0.7127997875213623
Epoch 19, CIFAR-10 Batch 2:  Cost: 0.0024330117739737034   Accuracy: 0.7109998464584351
Epoch 19, CIFAR-10 Batch 3:  Cost: 0.000666068575810641   Accuracy: 0.7107999324798584
Epoch 19, CIFAR-10 Batch 4:  Cost: 0.00173766550142318   Accuracy: 0.7041998505592346
Epoch 19, CIFAR-10 Batch 5:  Cost: 0.0043088290840387344   Accuracy: 0.7063998579978943
Epoch 20, CIFAR-10 Batch 1:  Cost: 0.0010535386390984058   Accuracy: 0.7143998742103577
Epoch 20, CIFAR-10 Batch 2:  Cost: 0.0017557875253260136   Accuracy: 0.7049999237060547
Epoch 20, CIFAR-10 Batch 3:  Cost: 0.0011157671688124537   Accuracy: 0.7079998850822449
Epoch 20, CIFAR-10 Batch 4:  Cost: 0.0024729736614972353   Accuracy: 0.707399845123291
Epoch 20, CIFAR-10 Batch 5:  Cost: 0.0010006529046222568   Accuracy: 0.7117998600006104
Epoch 21, CIFAR-10 Batch 1:  Cost: 0.0015173627762123942   Accuracy: 0.6839998960494995
Epoch 21, CIFAR-10 Batch 2:  Cost: 0.0017094771610572934   Accuracy: 0.7079998254776001
Epoch 21, CIFAR-10 Batch 3:  Cost: 0.0007108194986358285   Accuracy: 0.7077997922897339
Epoch 21, CIFAR-10 Batch 4:  Cost: 0.000719103729352355   Accuracy: 0.7165998220443726
Epoch 21, CIFAR-10 Batch 5:  Cost: 0.00024703177041374147   Accuracy: 0.7155998349189758
Epoch 22, CIFAR-10 Batch 1:  Cost: 0.005151714198291302   Accuracy: 0.715199887752533
Epoch 22, CIFAR-10 Batch 2:  Cost: 0.0004922379739582539   Accuracy: 0.7145997881889343
Epoch 22, CIFAR-10 Batch 3:  Cost: 0.0014029883313924074   Accuracy: 0.7077998518943787
Epoch 22, CIFAR-10 Batch 4:  Cost: 0.000624404929112643   Accuracy: 0.7155998945236206
Epoch 22, CIFAR-10 Batch 5:  Cost: 0.0013601458631455898   Accuracy: 0.7113998532295227
Epoch 23, CIFAR-10 Batch 1:  Cost: 0.0010543338721618056   Accuracy: 0.7205998301506042
Epoch 23, CIFAR-10 Batch 2:  Cost: 0.0007016768795438111   Accuracy: 0.7193998098373413
Epoch 23, CIFAR-10 Batch 3:  Cost: 0.0015196508029475808   Accuracy: 0.7099998593330383
Epoch 23, CIFAR-10 Batch 4:  Cost: 0.000680931203532964   Accuracy: 0.7057998180389404
Epoch 23, CIFAR-10 Batch 5:  Cost: 0.000452599284471944   Accuracy: 0.7069997787475586
Epoch 24, CIFAR-10 Batch 1:  Cost: 0.0014501460827887058   Accuracy: 0.7231998443603516
Epoch 24, CIFAR-10 Batch 2:  Cost: 0.0010109954746440053   Accuracy: 0.7149999141693115
Epoch 24, CIFAR-10 Batch 3:  Cost: 0.0002576475089881569   Accuracy: 0.7105997800827026
Epoch 24, CIFAR-10 Batch 4:  Cost: 0.0001328177604591474   Accuracy: 0.7193998694419861
Epoch 24, CIFAR-10 Batch 5:  Cost: 0.00025678740348666906   Accuracy: 0.7129998803138733
Epoch 25, CIFAR-10 Batch 1:  Cost: 0.0007174197817221284   Accuracy: 0.7055999040603638
Epoch 25, CIFAR-10 Batch 2:  Cost: 0.0008110328344628215   Accuracy: 0.7171998620033264
Epoch 25, CIFAR-10 Batch 3:  Cost: 0.0003734603524208069   Accuracy: 0.7131998538970947
Epoch 25, CIFAR-10 Batch 4:  Cost: 0.0033463635481894016   Accuracy: 0.7077998518943787
Epoch 25, CIFAR-10 Batch 5:  Cost: 0.0002050857583526522   Accuracy: 0.7145998477935791
Epoch 26, CIFAR-10 Batch 1:  Cost: 0.0008752575377002358   Accuracy: 0.7213997840881348
Epoch 26, CIFAR-10 Batch 2:  Cost: 0.0004321392916608602   Accuracy: 0.7187998294830322
Epoch 26, CIFAR-10 Batch 3:  Cost: 0.0001560761156724766   Accuracy: 0.7145999073982239
Epoch 26, CIFAR-10 Batch 4:  Cost: 0.00017555637168698013   Accuracy: 0.7015998959541321
Epoch 26, CIFAR-10 Batch 5:  Cost: 0.0005434632766991854   Accuracy: 0.7069998383522034
Epoch 27, CIFAR-10 Batch 1:  Cost: 0.00028977470356039703   Accuracy: 0.7125998735427856
Epoch 27, CIFAR-10 Batch 2:  Cost: 0.00013644242426380515   Accuracy: 0.7137998342514038
Epoch 27, CIFAR-10 Batch 3:  Cost: 0.0025453632697463036   Accuracy: 0.7077999114990234
Epoch 27, CIFAR-10 Batch 4:  Cost: 0.0011585825122892857   Accuracy: 0.7061998844146729
Epoch 27, CIFAR-10 Batch 5:  Cost: 0.0012678718194365501   Accuracy: 0.7013998627662659
Epoch 28, CIFAR-10 Batch 1:  Cost: 0.00023939118545968086   Accuracy: 0.7123998403549194
Epoch 28, CIFAR-10 Batch 2:  Cost: 0.00030748045537620783   Accuracy: 0.7119998931884766
Epoch 28, CIFAR-10 Batch 3:  Cost: 0.00043440394802019   Accuracy: 0.7125998735427856
Epoch 28, CIFAR-10 Batch 4:  Cost: 0.00016519481141585857   Accuracy: 0.7199997901916504
Epoch 28, CIFAR-10 Batch 5:  Cost: 9.406251047039405e-05   Accuracy: 0.7183998227119446
Epoch 29, CIFAR-10 Batch 1:  Cost: 0.0012387552997097373   Accuracy: 0.7197998762130737
Epoch 29, CIFAR-10 Batch 2:  Cost: 0.0008114411612041295   Accuracy: 0.7187998294830322
Epoch 29, CIFAR-10 Batch 3:  Cost: 0.006480005569756031   Accuracy: 0.7123998403549194
Epoch 29, CIFAR-10 Batch 4:  Cost: 0.0007370826788246632   Accuracy: 0.7121998071670532
Epoch 29, CIFAR-10 Batch 5:  Cost: 0.0011630068765953183   Accuracy: 0.7267998456954956
Epoch 30, CIFAR-10 Batch 1:  Cost: 0.001539389370009303   Accuracy: 0.719799816608429
Epoch 30, CIFAR-10 Batch 2:  Cost: 0.00040983560029417276   Accuracy: 0.7197998762130737
Epoch 30, CIFAR-10 Batch 3:  Cost: 4.851092671742663e-05   Accuracy: 0.7257998585700989
Epoch 30, CIFAR-10 Batch 4:  Cost: 9.854052041191608e-05   Accuracy: 0.7235998511314392
Epoch 30, CIFAR-10 Batch 5:  Cost: 0.00012493111717049032   Accuracy: 0.720599889755249
Epoch 31, CIFAR-10 Batch 1:  Cost: 0.00021208942052908242   Accuracy: 0.7233998775482178
Epoch 31, CIFAR-10 Batch 2:  Cost: 0.00034707874874584377   Accuracy: 0.7205997705459595
Epoch 31, CIFAR-10 Batch 3:  Cost: 0.00026026839623227715   Accuracy: 0.7205999493598938
Epoch 31, CIFAR-10 Batch 4:  Cost: 0.0008629712392576039   Accuracy: 0.7119998335838318
Epoch 31, CIFAR-10 Batch 5:  Cost: 0.0003214818425476551   Accuracy: 0.7227998971939087
Epoch 32, CIFAR-10 Batch 1:  Cost: 0.0019073227886110544   Accuracy: 0.7263997793197632
Epoch 32, CIFAR-10 Batch 2:  Cost: 0.00010580635716905817   Accuracy: 0.7191998362541199
Epoch 32, CIFAR-10 Batch 3:  Cost: 6.277130887610838e-05   Accuracy: 0.7165998220443726
Epoch 32, CIFAR-10 Batch 4:  Cost: 0.001562826568260789   Accuracy: 0.7033998966217041
Epoch 32, CIFAR-10 Batch 5:  Cost: 0.00020329431572463363   Accuracy: 0.7245998978614807
Epoch 33, CIFAR-10 Batch 1:  Cost: 0.0004407936939969659   Accuracy: 0.7165998220443726
Epoch 33, CIFAR-10 Batch 2:  Cost: 0.0005149327334947884   Accuracy: 0.7079999446868896
Epoch 33, CIFAR-10 Batch 3:  Cost: 0.00100232835393399   Accuracy: 0.7191997766494751
Epoch 33, CIFAR-10 Batch 4:  Cost: 0.00034858431899920106   Accuracy: 0.7119998335838318
Epoch 33, CIFAR-10 Batch 5:  Cost: 0.0003382640134077519   Accuracy: 0.7147998809814453
Epoch 34, CIFAR-10 Batch 1:  Cost: 0.0010628935415297747   Accuracy: 0.7147997617721558
Epoch 34, CIFAR-10 Batch 2:  Cost: 0.0005196825950406492   Accuracy: 0.71399986743927
Epoch 34, CIFAR-10 Batch 3:  Cost: 0.0002882725966628641   Accuracy: 0.723599910736084
Epoch 34, CIFAR-10 Batch 4:  Cost: 0.00024237975594587624   Accuracy: 0.7167999148368835
Epoch 34, CIFAR-10 Batch 5:  Cost: 0.00021157583978492767   Accuracy: 0.720599889755249
Epoch 35, CIFAR-10 Batch 1:  Cost: 0.0005255169235169888   Accuracy: 0.7125998735427856
Epoch 35, CIFAR-10 Batch 2:  Cost: 0.00046493945410475135   Accuracy: 0.7191998362541199
Epoch 35, CIFAR-10 Batch 3:  Cost: 0.0005991712678223848   Accuracy: 0.7233998775482178
Epoch 35, CIFAR-10 Batch 4:  Cost: 0.0007179464446380734   Accuracy: 0.7129998207092285
Epoch 35, CIFAR-10 Batch 5:  Cost: 0.0007305360632017255   Accuracy: 0.7217998504638672
Epoch 36, CIFAR-10 Batch 1:  Cost: 0.00015170854749158025   Accuracy: 0.7255997657775879
Epoch 36, CIFAR-10 Batch 2:  Cost: 0.0004690131463576108   Accuracy: 0.7179998159408569
Epoch 36, CIFAR-10 Batch 3:  Cost: 0.00030343892285600305   Accuracy: 0.7215998768806458
Epoch 36, CIFAR-10 Batch 4:  Cost: 0.0004071984440088272   Accuracy: 0.7161998748779297
Epoch 36, CIFAR-10 Batch 5:  Cost: 0.00014385937538463622   Accuracy: 0.7147998213768005
Epoch 37, CIFAR-10 Batch 1:  Cost: 0.0007444334914907813   Accuracy: 0.7203998565673828
Epoch 37, CIFAR-10 Batch 2:  Cost: 0.00014299411850515753   Accuracy: 0.7147998809814453
Epoch 37, CIFAR-10 Batch 3:  Cost: 0.00017504030256532133   Accuracy: 0.7205998301506042
Epoch 37, CIFAR-10 Batch 4:  Cost: 0.00040862662717700005   Accuracy: 0.7099998593330383
Epoch 37, CIFAR-10 Batch 5:  Cost: 0.00018798797100316733   Accuracy: 0.7079998254776001
Epoch 38, CIFAR-10 Batch 1:  Cost: 0.0007773498655296862   Accuracy: 0.7253998517990112
Epoch 38, CIFAR-10 Batch 2:  Cost: 0.00014287239173427224   Accuracy: 0.7267998456954956
Epoch 38, CIFAR-10 Batch 3:  Cost: 0.00031819293508306146   Accuracy: 0.7145998477935791
Epoch 38, CIFAR-10 Batch 4:  Cost: 0.00029673762037418783   Accuracy: 0.7117998600006104
Epoch 38, CIFAR-10 Batch 5:  Cost: 0.0001081527370843105   Accuracy: 0.7165998816490173
Epoch 39, CIFAR-10 Batch 1:  Cost: 0.00038928008871152997   Accuracy: 0.7261998653411865
Epoch 39, CIFAR-10 Batch 2:  Cost: 8.781386713963002e-05   Accuracy: 0.7323998212814331
Epoch 39, CIFAR-10 Batch 3:  Cost: 0.0007082756492309272   Accuracy: 0.7217998504638672
Epoch 39, CIFAR-10 Batch 4:  Cost: 0.000359036261215806   Accuracy: 0.7201998233795166
Epoch 39, CIFAR-10 Batch 5:  Cost: 0.00035315737477503717   Accuracy: 0.7235998511314392
Epoch 40, CIFAR-10 Batch 1:  Cost: 0.0010118960635736585   Accuracy: 0.7243998050689697
Epoch 40, CIFAR-10 Batch 2:  Cost: 0.0009146706433966756   Accuracy: 0.7227998375892639
Epoch 40, CIFAR-10 Batch 3:  Cost: 0.00013748512719757855   Accuracy: 0.7313998341560364
Epoch 40, CIFAR-10 Batch 4:  Cost: 0.001359576708637178   Accuracy: 0.7133998870849609
Epoch 40, CIFAR-10 Batch 5:  Cost: 6.367603782564402e-05   Accuracy: 0.7289998531341553
Epoch 41, CIFAR-10 Batch 1:  Cost: 0.00029128434835001826   Accuracy: 0.7197998762130737
Epoch 41, CIFAR-10 Batch 2:  Cost: 0.0005468979943543673   Accuracy: 0.7167999148368835
Epoch 41, CIFAR-10 Batch 3:  Cost: 0.00012705146218650043   Accuracy: 0.7233998775482178
Epoch 41, CIFAR-10 Batch 4:  Cost: 0.0001861376513261348   Accuracy: 0.71319979429245
Epoch 41, CIFAR-10 Batch 5:  Cost: 0.01511278934776783   Accuracy: 0.7215999364852905
Epoch 42, CIFAR-10 Batch 1:  Cost: 0.0003223343810532242   Accuracy: 0.7147998809814453
Epoch 42, CIFAR-10 Batch 2:  Cost: 0.00015779428940732032   Accuracy: 0.7179998755455017
Epoch 42, CIFAR-10 Batch 3:  Cost: 8.114187949104235e-05   Accuracy: 0.7291998863220215
Epoch 42, CIFAR-10 Batch 4:  Cost: 0.0001352681138087064   Accuracy: 0.7237998843193054
Epoch 42, CIFAR-10 Batch 5:  Cost: 3.0287190384115092e-05   Accuracy: 0.731799840927124
Epoch 43, CIFAR-10 Batch 1:  Cost: 0.0001704813475953415   Accuracy: 0.732999861240387
Epoch 43, CIFAR-10 Batch 2:  Cost: 0.00017517898231744766   Accuracy: 0.7199999094009399
Epoch 43, CIFAR-10 Batch 3:  Cost: 2.6655703550204635e-05   Accuracy: 0.7221997976303101
Epoch 43, CIFAR-10 Batch 4:  Cost: 2.7195539587410167e-05   Accuracy: 0.7165998816490173
Epoch 43, CIFAR-10 Batch 5:  Cost: 6.821753777330741e-05   Accuracy: 0.7235998511314392
Epoch 44, CIFAR-10 Batch 1:  Cost: 0.0003317658556625247   Accuracy: 0.7285998463630676
Epoch 44, CIFAR-10 Batch 2:  Cost: 0.001108048832975328   Accuracy: 0.7275997996330261
Epoch 44, CIFAR-10 Batch 3:  Cost: 6.333497003652155e-05   Accuracy: 0.7185998558998108
Epoch 44, CIFAR-10 Batch 4:  Cost: 0.00010716242832131684   Accuracy: 0.721599817276001
Epoch 44, CIFAR-10 Batch 5:  Cost: 6.078172737034038e-05   Accuracy: 0.726399838924408
Epoch 45, CIFAR-10 Batch 1:  Cost: 0.00036147853825241327   Accuracy: 0.7191998958587646
Epoch 45, CIFAR-10 Batch 2:  Cost: 0.0012717170175164938   Accuracy: 0.7163997888565063
Epoch 45, CIFAR-10 Batch 3:  Cost: 7.026575622148812e-05   Accuracy: 0.720599889755249
Epoch 45, CIFAR-10 Batch 4:  Cost: 0.0010715550743043423   Accuracy: 0.7063998579978943
Epoch 45, CIFAR-10 Batch 5:  Cost: 0.000270753022050485   Accuracy: 0.7175998687744141
Epoch 46, CIFAR-10 Batch 1:  Cost: 0.00027617611340247095   Accuracy: 0.7247998714447021
Epoch 46, CIFAR-10 Batch 2:  Cost: 3.325300713186152e-05   Accuracy: 0.7289998531341553
Epoch 46, CIFAR-10 Batch 3:  Cost: 0.00027728514396585524   Accuracy: 0.7227998971939087
Epoch 46, CIFAR-10 Batch 4:  Cost: 0.0016766928602010012   Accuracy: 0.7125998735427856
Epoch 46, CIFAR-10 Batch 5:  Cost: 0.00024974936968646944   Accuracy: 0.7187998294830322
Epoch 47, CIFAR-10 Batch 1:  Cost: 3.689949880936183e-05   Accuracy: 0.7211998105049133
Epoch 47, CIFAR-10 Batch 2:  Cost: 0.00030927039915695786   Accuracy: 0.7301998138427734
Epoch 47, CIFAR-10 Batch 3:  Cost: 7.304242899408564e-05   Accuracy: 0.7247998714447021
Epoch 47, CIFAR-10 Batch 4:  Cost: 0.0008929421892389655   Accuracy: 0.7127999067306519
Epoch 47, CIFAR-10 Batch 5:  Cost: 0.0002075439551845193   Accuracy: 0.7181998491287231
Epoch 48, CIFAR-10 Batch 1:  Cost: 0.002583511173725128   Accuracy: 0.7255998253822327
Epoch 48, CIFAR-10 Batch 2:  Cost: 0.00044093086034990847   Accuracy: 0.7141998410224915
Epoch 48, CIFAR-10 Batch 3:  Cost: 6.165904778754339e-05   Accuracy: 0.7175998687744141
Epoch 48, CIFAR-10 Batch 4:  Cost: 4.105936022824608e-05   Accuracy: 0.71399986743927
Epoch 48, CIFAR-10 Batch 5:  Cost: 0.00010428213136037812   Accuracy: 0.7211998105049133
Epoch 49, CIFAR-10 Batch 1:  Cost: 4.473490116652101e-05   Accuracy: 0.7277998328208923
Epoch 49, CIFAR-10 Batch 2:  Cost: 7.672914944123477e-05   Accuracy: 0.7173998355865479
Epoch 49, CIFAR-10 Batch 3:  Cost: 7.768969953758642e-05   Accuracy: 0.7345998287200928
Epoch 49, CIFAR-10 Batch 4:  Cost: 0.00024585716892033815   Accuracy: 0.7141999006271362
Epoch 49, CIFAR-10 Batch 5:  Cost: 0.0007073573651723564   Accuracy: 0.7193998098373413
Epoch 50, CIFAR-10 Batch 1:  Cost: 7.136027852538973e-05   Accuracy: 0.721599817276001
Epoch 50, CIFAR-10 Batch 2:  Cost: 0.0001142418768722564   Accuracy: 0.7165998816490173
Epoch 50, CIFAR-10 Batch 3:  Cost: 8.969713235273957e-05   Accuracy: 0.7215998768806458
Epoch 50, CIFAR-10 Batch 4:  Cost: 4.93807892780751e-05   Accuracy: 0.7181999087333679
Epoch 50, CIFAR-10 Batch 5:  Cost: 3.084295894950628e-05   Accuracy: 0.7207998037338257

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [19]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.72158203125

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.


In [ ]: