input_feats Tensor("ner/ExpandDims:0", shape=(?, 1, 124, 420), dtype=float32)
filter_shape [1, 3, Dimension(420), 300]
h0 Tensor("ner/relu:0", shape=(?, 1, 124, 300), dtype=float32)
last_output Tensor("ner/concat_1:0", shape=(?, 1, 124, 300), dtype=float32)
block output Tensor("ner/block/iterated-block/relu_2:0", shape=(?, ?, ?, 300), dtype=float32)
h_concat_squeeze Tensor("ner/block/Squeeze:0", shape=(?, ?, 300), dtype=float32)
h_concat_flat Tensor("ner/block/Reshape:0", shape=(?, 300), dtype=float32)
input_to_pred Tensor("ner/block/hidden_dropout/dropout/mul:0", shape=(?, 300), dtype=float32)
proj_width 300
scores Tensor("ner/block/output/scores:0", shape=(?, 9), dtype=float32)
unflat_scores Tensor("ner/block/output/Reshape:0", shape=(?, 124, 9), dtype=float32)
block output Tensor("ner/block_1/iterated-block/relu_2:0", shape=(?, ?, ?, 300), dtype=float32)
h_concat_squeeze Tensor("ner/block_1/Squeeze:0", shape=(?, ?, 300), dtype=float32)
h_concat_flat Tensor("ner/block_1/Reshape:0", shape=(?, 300), dtype=float32)
input_to_pred Tensor("ner/block_1/hidden_dropout/dropout/mul:0", shape=(?, 300), dtype=float32)
proj_width 300
scores Tensor("ner/block_1/output/scores:0", shape=(?, 9), dtype=float32)
unflat_scores Tensor("ner/block_1/output/Reshape:0", shape=(?, 124, 9), dtype=float32)
block output Tensor("ner/block_2/iterated-block/relu_2:0", shape=(?, ?, ?, 300), dtype=float32)
h_concat_squeeze Tensor("ner/block_2/Squeeze:0", shape=(?, ?, 300), dtype=float32)
h_concat_flat Tensor("ner/block_2/Reshape:0", shape=(?, 300), dtype=float32)
input_to_pred Tensor("ner/block_2/hidden_dropout/dropout/mul:0", shape=(?, 300), dtype=float32)
proj_width 300
scores Tensor("ner/block_2/output/scores:0", shape=(?, 9), dtype=float32)
unflat_scores Tensor("ner/block_2/output/Reshape:0", shape=(?, 124, 9), dtype=float32)
crf=True, creating SLL
crf=True, creating SLL
crf=True, creating SLL
/opt/conda/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py:91: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Setting up word embedding visualization
Writing metadata
Training epoch 1.
Train (Loss 0.0780) (185.126 sec)
Validation (F1 = 0.8433) (Acc 50067/51409 = 0.9739) (9.690 sec)
Highest dev F1 achieved yet -- writing model
Training epoch 2.
(last improvement @ 1)
Train (Loss 0.0275) (184.544 sec)
Validation (F1 = 0.8854) (Acc 50366/51409 = 0.9797) (9.479 sec)
Highest dev F1 achieved yet -- writing model
Training epoch 3.
(last improvement @ 2)
Train (Loss 0.0170) (184.135 sec)
Validation (F1 = 0.8940) (Acc 50455/51409 = 0.9814) (9.470 sec)
Highest dev F1 achieved yet -- writing model
Training epoch 4.
(last improvement @ 3)
Train (Loss 0.0119) (184.240 sec)
Validation (F1 = 0.8693) (Acc 50256/51409 = 0.9776) (9.480 sec)
Training epoch 5.
(last improvement @ 3)
Train (Loss 0.0081) (184.122 sec)
Validation (F1 = 0.8978) (Acc 50488/51409 = 0.9821) (9.470 sec)
Highest dev F1 achieved yet -- writing model
Training epoch 6.
(last improvement @ 5)
Train (Loss 0.0059) (184.112 sec)
Validation (F1 = 0.9000) (Acc 50533/51409 = 0.9830) (9.492 sec)
Highest dev F1 achieved yet -- writing model
Training epoch 7.
(last improvement @ 6)
Train (Loss 0.0051) (184.330 sec)
Validation (F1 = 0.8969) (Acc 50537/51409 = 0.9830) (9.472 sec)
Training epoch 8.
(last improvement @ 6)
Train (Loss 0.0046) (184.252 sec)
Validation (F1 = 0.9058) (Acc 50581/51409 = 0.9839) (9.475 sec)
Highest dev F1 achieved yet -- writing model
Training epoch 9.
(last improvement @ 8)
Train (Loss 0.0040) (184.411 sec)
Validation (F1 = 0.9096) (Acc 50581/51409 = 0.9839) (9.477 sec)
Highest dev F1 achieved yet -- writing model
Training epoch 10.
(last improvement @ 9)
Train (Loss 0.0038) (184.194 sec)
Validation (F1 = 0.9026) (Acc 50548/51409 = 0.9833) (9.478 sec)
Training epoch 11.
(last improvement @ 9)
Train (Loss 0.0032) (184.339 sec)
Validation (F1 = 0.8985) (Acc 50504/51409 = 0.9824) (9.472 sec)
Training epoch 12.
(last improvement @ 9)
Train (Loss 0.0035) (184.376 sec)
Validation (F1 = 0.9031) (Acc 50584/51409 = 0.9840) (9.473 sec)
Training epoch 13.
(last improvement @ 9)
Train (Loss 0.0029) (184.432 sec)
Validation (F1 = 0.8989) (Acc 50514/51409 = 0.9826) (9.472 sec)
Training epoch 14.
(last improvement @ 9)
Train (Loss 0.0032) (184.203 sec)
Validation (F1 = 0.8965) (Acc 50472/51409 = 0.9818) (9.491 sec)
Training epoch 15.
(last improvement @ 9)
Train (Loss 0.0780) (184.150 sec)
Validation (F1 = 0.8992) (Acc 50479/51409 = 0.9819) (9.472 sec)
Training epoch 16.
(last improvement @ 9)
Train (Loss 0.0025) (184.176 sec)
Validation (F1 = 0.8931) (Acc 50515/51409 = 0.9826) (9.477 sec)
Training epoch 17.
(last improvement @ 9)
Train (Loss 0.0027) (184.025 sec)
Validation (F1 = 0.9027) (Acc 50527/51409 = 0.9828) (9.472 sec)
Training epoch 18.
(last improvement @ 9)
Train (Loss 0.0029) (184.216 sec)
Validation (F1 = 0.8594) (Acc 50123/51409 = 0.9750) (9.474 sec)
Training epoch 19.
(last improvement @ 9)
Train (Loss 0.0028) (184.371 sec)
Validation (F1 = 0.8901) (Acc 50416/51409 = 0.9807) (9.474 sec)
Training epoch 20.
(last improvement @ 9)
Train (Loss 0.0033) (184.063 sec)
Validation (F1 = 0.8962) (Acc 50505/51409 = 0.9824) (9.475 sec)
Training epoch 21.
(last improvement @ 9)
Train (Loss 0.0024) (184.082 sec)
Validation (F1 = 0.8653) (Acc 50216/51409 = 0.9768) (9.471 sec)
Training epoch 22.
(last improvement @ 9)
Train (Loss 0.0022) (184.306 sec)
Validation (F1 = 0.8859) (Acc 50439/51409 = 0.9811) (9.470 sec)
Training epoch 23.
(last improvement @ 9)
Train (Loss 0.0030) (184.135 sec)
Validation (F1 = 0.8923) (Acc 50440/51409 = 0.9812) (9.469 sec)
Training epoch 24.
(last improvement @ 9)
Train (Loss 0.0023) (184.273 sec)
Validation (F1 = 0.8917) (Acc 50466/51409 = 0.9817) (9.475 sec)
Training epoch 25.
(last improvement @ 9)
Train (Loss 0.0025) (184.249 sec)
Validation (F1 = 0.8919) (Acc 50464/51409 = 0.9816) (9.472 sec)
Training epoch 26.
(last improvement @ 9)
Train (Loss 0.0024) (184.290 sec)
Validation (F1 = 0.8948) (Acc 50416/51409 = 0.9807) (9.473 sec)
Training epoch 27.
(last improvement @ 9)
Train (Loss 0.0025) (184.221 sec)
Validation (F1 = 0.8929) (Acc 50415/51409 = 0.9807) (9.469 sec)
Training epoch 28.
(last improvement @ 9)
Train (Loss 0.0019) (184.333 sec)
Validation (F1 = 0.8845) (Acc 50396/51409 = 0.9803) (9.473 sec)
Training epoch 29.
(last improvement @ 9)
Train (Loss 0.0022) (184.331 sec)
Validation (F1 = 0.8818) (Acc 50313/51409 = 0.9787) (9.475 sec)
Training epoch 30.
(last improvement @ 9)
Train (Loss 0.0026) (184.331 sec)
Validation (F1 = 0.8872) (Acc 50421/51409 = 0.9808) (9.468 sec)
Training epoch 31.
(last improvement @ 9)
Train (Loss 0.0019) (184.306 sec)
Validation (F1 = 0.9050) (Acc 50547/51409 = 0.9832) (9.469 sec)
Training epoch 32.
(last improvement @ 9)
Train (Loss 0.0031) (184.297 sec)
Validation (F1 = 0.8868) (Acc 50423/51409 = 0.9808) (9.475 sec)
Training epoch 33.
(last improvement @ 9)
Train (Loss 0.0022) (184.284 sec)
Validation (F1 = 0.9008) (Acc 50517/51409 = 0.9826) (9.471 sec)
Training epoch 34.
(last improvement @ 9)
Train (Loss 0.0025) (184.318 sec)
Validation (F1 = 0.8946) (Acc 50480/51409 = 0.9819) (9.471 sec)
Training epoch 35.
(last improvement @ 9)
Train (Loss 0.0037) (184.190 sec)
Validation (F1 = 0.9012) (Acc 50536/51409 = 0.9830) (9.487 sec)
Training epoch 36.
(last improvement @ 9)
Train (Loss 0.0014) (184.390 sec)
Validation (F1 = 0.8946) (Acc 50469/51409 = 0.9817) (9.471 sec)
Training epoch 37.
(last improvement @ 9)
Train (Loss 0.0052) (184.374 sec)
Validation (F1 = 0.9002) (Acc 50518/51409 = 0.9827) (9.472 sec)
Training epoch 38.
(last improvement @ 9)
Train (Loss 0.0016) (184.272 sec)
Validation (F1 = 0.9032) (Acc 50506/51409 = 0.9824) (9.469 sec)
Training epoch 39.
(last improvement @ 9)
Train (Loss 0.0025) (184.458 sec)
Validation (F1 = 0.8953) (Acc 50509/51409 = 0.9825) (9.470 sec)
Training epoch 40.
(last improvement @ 9)
Train (Loss 0.0023) (184.141 sec)
Validation (F1 = 0.8820) (Acc 50382/51409 = 0.9800) (9.467 sec)
Training epoch 41.
(last improvement @ 9)
Train (Loss 0.0023) (184.303 sec)
Validation (F1 = 0.8954) (Acc 50442/51409 = 0.9812) (9.475 sec)
Training epoch 42.
(last improvement @ 9)
Train (Loss 0.0028) (184.345 sec)
Validation (F1 = 0.8928) (Acc 50437/51409 = 0.9811) (9.477 sec)
Training epoch 43.
(last improvement @ 9)
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-7-41b3d28b4db4> in <module>()
20 fscore=1,
21 viz=1,
---> 22 crf=True)
23
24 #1 -- 86.55 dropout at .45 and 300 filters. stopped at epoc 24.
/src/NLPutils/trainers/dconv2.py in train(self, name, ts, f2i, vs, es, char_vec, word_vec, eval_out, batchsz, epochs, dropout, test_thresh, patience, rnn, maxlen, maxw, wsz, hsz, cfiltsz, optim, eta, crf, fscore, viz, clip, kernel_size, num_layers, num_iterations, word_keep, num_filt)
276 if i > 0:
277 print('\t(last improvement @ %d)' % (last_improved+1))
--> 278 self._train(ts, dropout, batchsz, model, self.sess, word_keep)
279 this_acc, this_f1 = self.test(vs, batchsz, 'Validation')
280
/src/NLPutils/trainers/dconv2.py in _train(self, ts, dropout, batchsz, model, sess, word_keep)
331 feed_dict = model.ex2dict(ts_i, 1.0-dropout, True, word_keep)
332
--> 333 _, step, summary_str, lossv = sess.run([self.train_op, self.global_step, self.summary_op, self.loss], feed_dict=feed_dict)
334 self.train_writer.add_summary(summary_str, step)
335
/opt/conda/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/opt/conda/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
963 if final_fetches or final_targets:
964 results = self._do_run(handle, final_targets, final_fetches,
--> 965 feed_dict_string, options, run_metadata)
966 else:
967 results = []
/opt/conda/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1013 if handle is None:
1014 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015 target_list, options, run_metadata)
1016 else:
1017 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/opt/conda/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1020 def _do_call(self, fn, *args):
1021 try:
-> 1022 return fn(*args)
1023 except errors.OpError as e:
1024 message = compat.as_text(e.message)
/opt/conda/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1002 return tf_session.TF_Run(session, options,
1003 feed_dict, fetch_list, target_list,
-> 1004 status, run_metadata)
1005
1006 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: