In [1]:
### Get comments by using Facebook API ###
import facebook
import requests
### Cleaning the comments using nltk ###
import re
import nltk
#nltk.download('stopwords') # Uncomment to download stopwords
from nltk.corpus import stopwords
from nltk.stem.snowball import SpanishStemmer
### Create Bag of Words model ###
from sklearn.feature_extraction.text import CountVectorizer
### Create Bag of Words model ###
from sklearn.feature_extraction.text import CountVectorizer
### Web Scrapping ###
from bs4 import BeautifulSoup
### Saving data ###
import os
def get_id_link(id='prensalibregt/posts?'):
access_token = 'EAACEdEose0cBAGX0IhGJg7mNAEoBWZCZBs1n6WrTcuoMDzTpihe1iLkGSPoa4MFGodJS9AZAi4ffPBVrIq23RLEJOg868udul63CAEoPsrZABfhOZB1fSRkA7d7s3ZBxrvkPEn3h9BPGB3wU1Gc3vOTEK1GGZBeZARb0AqPsjDWScrfCCz54dZAV7q4g4Fh2UX3aNTtHNUZCtZAugZDZD'
graph = facebook.GraphAPI(access_token)
post = graph.get_object(id=id, fields='link')
id_news = []
link_news = []
for posts in post['data']:
id_news.append(posts['id'])
link_news.append(posts['link'])
return [id_news, link_news]
def get_facebook_comments(news_id):
comments = get_comments(news_id)
corpus = clean_comments(comments)
words = bag_of_words(corpus, max_features = 10)
return [comments, corpus, words]
def get_comments(news_id):
# Facebook Access Token: https://developers.facebook.com/tools/explorer/
access_token = 'EAACEdEose0cBAGX0IhGJg7mNAEoBWZCZBs1n6WrTcuoMDzTpihe1iLkGSPoa4MFGodJS9AZAi4ffPBVrIq23RLEJOg868udul63CAEoPsrZABfhOZB1fSRkA7d7s3ZBxrvkPEn3h9BPGB3wU1Gc3vOTEK1GGZBeZARb0AqPsjDWScrfCCz54dZAV7q4g4Fh2UX3aNTtHNUZCtZAugZDZD'
user = '/me'
graph = facebook.GraphAPI(access_token)
profile = graph.get_object(user)
# Testing with Prensa Libre's posts
posts = graph.get_connections(id =news_id, connection_name='comments')
comments = []
while True:
try:
for post in posts['data']:
comments.append(post['message'])
posts = requests.get(posts['paging']['next']).json()
except KeyError:
break
return comments
def clean_comments(comments):
corpus = []
for i in range(0,len(comments)):
review = re.sub('[^a-zA-Z]', ' ', comments[i])
review = review.lower()
review = review.split()
stemmer = SpanishStemmer()
review = [stemmer.stem(word) for word in review if not word in set(stopwords.words('spanish'))]
review = ' '.join(review)
corpus.append(review)
return corpus
def bag_of_words(corpus, max_features = 5):
cv = CountVectorizer(max_features = max_features)
X = cv.fit_transform(corpus).toarray()
return cv.get_feature_names()
def getNoticia(url):
# Capturamos la url ingresada en la variable "url"
url = url
r = requests.get(url)
data = r.text
# Creamos el objeto soup y le pasamos lo capturado con request
soup = BeautifulSoup(data, "html.parser")
#aqui se toman los articulos extra de prensalibre para removerlos al final y dejar solo la noticia de interes
articles = soup.find_all('article', {'class' : 'story related gi'})
numArticulos = 0
for article in articles:
numArticulos+=1
# Find all of the text between paragraph tags and strip out the html
parrafos = soup.find_all('p', {'class' : ''})
listaParrafos = []
for parrafo in parrafos:
listaParrafos.append(parrafo.getText())
#obtener solo los parrafos de contenido relevante (no noticias adicionales, publicidad, etc...)
limiteSinArticulos = len(listaParrafos)- numArticulos#len(listaArticulos)
cadena = ""
for i in range(0,limiteSinArticulos):
cadena += listaParrafos[i]
return cadena
def get_News(url):
listNews = []
news = getNoticia(url)
listNews.append(news)
corpus = clean_comments(listNews)
words = bag_of_words(corpus, max_features = 10)
return [listNews, corpus, words]
### Auxiliary function for making array of words ###
def palabraComentario (lista1, lista2):
listaT = []
for p in lista1:
for c in lista2:
listaT.append([p,c])
return listaT
### Auxiliary functions for plotting ###
def dispersion_plot(corpus, words):
tokens = []
for word in corpus:
tokens = tokens + nltk.word_tokenize(word)
text = nltk.Text(tokens)
text.dispersion_plot(words)
return
def frequency_plot(corpus, words):
tokens = []
for word in corpus:
tokens = tokens + nltk.word_tokenize(word)
text = nltk.Text(tokens)
fd = nltk.FreqDist(text)
fd.plot(50,cumulative=False)
return
### Auxiliary function for saving data ###
def save_data(file, data):
file = open(file, "w")
for e in data:
file.write(e[0] + "," + e[1] + os.linesep)
file.close()
In [2]:
[id_news, link_news] = get_id_link()
print(id_news[1], link_news[1])
In [4]:
[facebook_comments, facebook_corpus, facebook_words] = get_facebook_comments(id_news[2])
[news_comments, news_corpus, news_words] = get_News(link_news[2])
data = palabraComentario (facebook_words, news_words)
save_data("data.txt", data)
In [ ]: