In [7]:
### Get comments by using Facebook API ###
import facebook
import requests
### Cleaning the comments using nltk ###
import re
import nltk
#nltk.download('stopwords') # Uncomment to download stopwords
from nltk.corpus import stopwords
from nltk.stem.snowball import SpanishStemmer
### Create Bag of Words model ###
from sklearn.feature_extraction.text import CountVectorizer
def get_facebook_comments(news_id):
comments = get_comments(news_id)
corpus = clean_comments(comments)
words = bag_of_words(corpus, max_features = 10)
return [comments, corpus, words]
def get_comments(news_id):
# Facebook Access Token: https://developers.facebook.com/tools/explorer/
access_token = 'EAACEdEose0cBABjilDM2x7Sv3050ZBiLxZBz64nyzm8pShZBkal9Hnb9IHe8INum9zMHIziWxWXSbcpP8Ezb6ZCd03UCQZAqPzc9XmapZAh0ZBVq23K7lFOvbhhRSrjFQZCs0wptCwTUVPNKqaWBWbNepNqGzIVwLMGdPReiXZAMrMHa8TcZAwPOKSpv1jmHweUZAC448j6j7tWhAZDZD'
user = '/me'
graph = facebook.GraphAPI(access_token)
profile = graph.get_object(user)
# Testing with Prensa Libre's posts
posts = graph.get_connections(id =news_id, connection_name='comments')
comments = []
while True:
try:
for post in posts['data']:
comments.append(post['message'])
posts = requests.get(posts['paging']['next']).json()
except KeyError:
break
return comments
def clean_comments(comments):
corpus = []
for i in range(0,len(comments)):
review = re.sub('[^a-zA-Z]', ' ', comments[i])
review = review.lower()
review = review.split()
stemmer = SpanishStemmer()
review = [stemmer.stem(word) for word in review if not word in set(stopwords.words('spanish'))]
review = ' '.join(review)
corpus.append(review)
return corpus
def bag_of_words(corpus, max_features = 5):
cv = CountVectorizer(max_features = max_features)
X = cv.fit_transform(corpus).toarray()
return cv.get_feature_names()
### Auxiliary functions for plotting ###
def dispersion_plot(corpus, words):
tokens = []
for word in corpus:
tokens = tokens + nltk.word_tokenize(word)
text = nltk.Text(tokens)
text.dispersion_plot(words)
return
def frequency_plot(corpus, words):
tokens = []
for word in corpus:
tokens = tokens + nltk.word_tokenize(word)
text = nltk.Text(tokens)
fd = nltk.FreqDist(text)
fd.plot(50,cumulative=False)
return
In [8]:
[comments, corpus, words] = get_facebook_comments('345419408148_10155480254368149')
#print(len(comments))
dispersion_plot(corpus, words)
frequency_plot(corpus, words)
In [ ]: