### Fitting model Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='auto', tol=0.001) ###
Fold # of CV -> 1
Error for fold 1 is 24.0085184612
Fold # of CV -> 2
Error for fold 2 is 22.9652170097
Fold # of CV -> 3
Error for fold 3 is 32.4027322294
Average CV error is 26.4588225668
OOS error ---> 19.8432255394
### Fitting model Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False) ###
Fold # of CV -> 1
Error for fold 1 is 29.0020528231
Fold # of CV -> 2
Error for fold 2 is 30.7113519387
Fold # of CV -> 3
Error for fold 3 is 31.5664792076
Average CV error is 30.4266279898
OOS error ---> 26.9220710546
Stacking base models using RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=9,
verbose=0, warm_start=False) ---->
### Fitting model RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=9,
verbose=0, warm_start=False) ###
Fold # of CV -> 1
Error for fold 1 is 23.6845254237
Fold # of CV -> 2
Error for fold 2 is 30.3438033898
Fold # of CV -> 3
Error for fold 3 is 37.7114652542
Average CV error is 30.5799313559
OOS error ---> 16.0319447368