### Fitting model KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=10, p=2,
weights='uniform') ###
Fold # of CV -> 1
Error for fold 1 is 0.815280754594
Fold # of CV -> 2
Error for fold 2 is 0.886837877026
Fold # of CV -> 3
Error for fold 3 is 0.58497288391
Fold # of CV -> 4
Error for fold 4 is 0.936253446539
Fold # of CV -> 5
Error for fold 5 is 0.810556077683
Average CV error is 0.80678020795
OOS error ---> 0.339359399417
### Fitting model LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l2', random_state=None, solver='newton-cg', tol=0.0001,
verbose=0, warm_start=False) ###
Fold # of CV -> 1
Error for fold 1 is 0.368839670768
Fold # of CV -> 2
Error for fold 2 is 0.314639127104
Fold # of CV -> 3
Error for fold 3 is 0.299289908198
Fold # of CV -> 4
Error for fold 4 is 0.37031742597
Fold # of CV -> 5
Error for fold 5 is 0.314993716533
Average CV error is 0.333615969715
OOS error ---> 0.292313606775
### Fitting model GaussianNB(priors=None) ###
Fold # of CV -> 1
Error for fold 1 is 1.39569120634
Fold # of CV -> 2
Error for fold 2 is 1.58689959906
Fold # of CV -> 3
Error for fold 3 is 1.2151105327
Fold # of CV -> 4
Error for fold 4 is 1.68324715717
Fold # of CV -> 5
Error for fold 5 is 1.12370852994
Average CV error is 1.40093140504
OOS error ---> 1.07114753643
Stacking base models using RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=9,
verbose=0, warm_start=False) ---->
### Fitting model RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=9,
verbose=0, warm_start=False) ###
Fold # of CV -> 1
Error for fold 1 is 1.01362771683
Fold # of CV -> 2
Error for fold 2 is 1.07915666945
Fold # of CV -> 3
Error for fold 3 is 1.11400300747
Fold # of CV -> 4
Error for fold 4 is 0.957715272867
Fold # of CV -> 5
Error for fold 5 is 0.791825135929
Average CV error is 0.99126556051
OOS error ---> 0.219686600977